17,872 research outputs found

    Controlled environment life support system: Growth studies with potatoes

    Get PDF
    Results of experiments conducted to maximize the productivity of potatoes grown under controlled environmental conditions are discussed. A variety of parameters is examined which affect potato growth, specifically, photoperiod, light intensity, temperature, nitrogen nutrition, carbon dioxide concentration and culture techniques. These experiments were conducted using five different cultivars, Russet Burbank, Norchip, Superior, Kennebec and Norland. To achieve high productivity, three specific objectives were explored: (1) to develop effective cultural procedures, (2) to determine the most effective photoperiod and (3) to develop a mist culture system. It is felt that the productivity obtained in this study is below the maximum that can be obtained. High irradiance levels coupled with tuber-promoting conditions such as cooler temperatures, increased CO2 levels and lowered nitrogen concentrations should allow increases in tuber production. Tuberization appears to be accelerated by short daylengths although final yields are not increased. Mist culture techniques have not yet produced fully developed tubers. The use of supporting media and alteration of the nitrogen content of the mist solution are being explored as a way to allow tubers to develop to maturity

    Carbon dioxide and water exchange rates by a wheat crop in NASA's biomass production chamber: Results from an 86-day study (January to April 1989)

    Get PDF
    Gas exchange measurements were taken for a 20 sq m wheat stand grown from seed to harvest in NASA's Biomass Production Chamber. Respiration of the wheat stand caused the CO2 concentrations to rise an average of 440 ppm during the 4-h dark period each day, or 7.2 umol/sq m/sec. Dark period respiration was sensitive to temperature changes and could be increased 70 to 75 percent by raising the temperature from 16 C to 24 C. Stand photosynthesis (measured from the rate of CO2 drawdown immediately after the lights came on each day) peaked at 27 umol/sq m/sec at 25 days after planting and averaged 15 umol/sq m/sec throughout the study. By combining the average light period photosynthesis and average dark period respiration, a net of 860 g or 470 liters of CO2 were fixed per day. Stand photosynthetic rates showed a linear increase with increasing irradiance (750 umol/sq m/sec PPF the highest level tested), with an average light compensation point after day 30 of 190 umol/sq m/sec. Stand photosynthesis decreased slightly when CO2 levels were decreased from 2200 to 800 ppm, but dropped sharply when CO2 was decreased below 700 to 800 ppm. Water production from stand transpiration peaked at 120 L/day near 25 days and averaged about 90 L/day, or 4.5 L/sq m/day throughout the study

    Beam profiles measured with thermoluminescent dosimeters

    Get PDF
    Beam profilometer, using thermoluminescent dosimeters, gives a quantitative and qualitative representation of the focus of an external protron beam of a synchrotron. The total number of particles in the beam, particle distribution, and the shape of the beam are determined

    Utilization of potatoes in bioregenerative life support systems

    Get PDF
    Data on the tuberization, harvest index, and morphology of 2 cvs of white potato (Solanum tuberosum L.) grown at 12, 16, 20, 24 and 28 C, 250, 400 and 550 micromol/s/m photosynthetic photon flux (PPF), 350, 1000 and 1600 microliter 1 sup -1 CO2 is presented. A productivity of 21.9 g/m day sup -1 of edible tubers from a solid stand of potatoes grown for 15 weeks with continuous irradiation at 400 micromol/s/m, 16 C and 1000 microliter 1 sup -1 CO2 was obtained. This equates to an area of 34.3 sq m being required to provide 2800 kcal of potatoes per day for a human diet. Separated plants receiving side lighting have produced 32.8 g/m day sup -1 which equates to an area of 23.6 sq m to provide 2800 kcal. Studies with side lighting indicate that productivities in this range should be realized from potatoes. Glycoalkaloid levels in tubers of controlled environment grown plants are within the range of levels found in tubers of field grown plants. The use and limitation of recirculating solution cultures for potato growth is discussed

    Discrete holomorphicity and quantized affine algebras

    Full text link
    We consider non-local currents in the context of quantized affine algebras, following the construction introduced by Bernard and Felder. In the case of Uq(A1(1))U_q(A_1^{(1)}) and Uq(A2(2))U_q(A_2^{(2)}), these currents can be identified with configurations in the six-vertex and Izergin--Korepin nineteen-vertex models. Mapping these to their corresponding Temperley--Lieb loop models, we directly identify non-local currents with discretely holomorphic loop observables. In particular, we show that the bulk discrete holomorphicity relation and its recently derived boundary analogue are equivalent to conservation laws for non-local currents

    Scenarios for optimizing potato productivity in a lunar CELSS

    Get PDF
    The use of controlled ecological life support system (CELSS) in the development and growth of large-scale bases on the Moon will reduce the expense of supplying life support materials from Earth. Such systems would use plants to produce food and oxygen, remove carbon dioxide, and recycle water and minerals. In a lunar CELSS, several factors are likely to be limiting to plant productivity, including the availability of growing area, electrical power, and lamp/ballast weight for lighting systems. Several management scenarios are outlined in this discussion for the production of potatoes based on their response to irradiance, photoperiod, and carbon dioxide concentration. Management scenarios that use 12-hr photoperiods, high carbon dioxide concentrations, and movable lamp banks to alternately irradiate halves of the growing area appear to be the most efficient in terms of growing area, electrical power, and lamp weights. However, the optimal scenario will be dependent upon the relative 'costs' of each factor

    Proximate Composition of Seed and Biomass from Soybean Plants Grown at Different Carbon Dioxide (CO2) Concentrations

    Get PDF
    Soybean plants were grown for 90 days at 500, 1000, 2000, and 5000 ubar (ppm) carbon dioxide (CO2) and compared for proximate nutritional value. For both cultivars (MC and PX), seed protein levels were highest at 1000 (39.3 and 41.9 percent for MC and PX) and lowest at 2000 (34.7 and 38.9 percent for MC and PX). Seed fat (oil) levels were highest at 2000 (21.2 and 20.9 percent for MC and PX) and lowest at 5000 (13.6 and 16.6 percent for MC and PX). Seed carbohydrate levels were highest at 500 (31.5 and 28.4 percent for MC and PX) and lowest at 2000 (20.9 and 20.8 percent for MC and PX). When adjusted for total seed yield per unit growing area, the highest production of protein and carbohydrate occurred with MC at 1000, while equally high amounts of fat were produced with MC at 1000 and 2000. Seed set and pod development at 2000 were delayed in comparison to other CO2 treatments; thus the proportionately high fat and low protein at 2000 may have been a result of the delay in plant maturity rather than CO2 concentration. Stem crude fiber and carbohydrate levels for both cultivars increased with increased CO2. Leaf protein and crude fiber levels also tended to rise with increased CO2 but leaf carbohydrate levels decreased as CO2 was increased. The results suggest that CO2 effects on total seed yield out-weighed any potential advantages to changes in seed composition

    The reduced cost of providing a nationally recognised service for familial hypercholesterolaemia

    No full text
    OBJECTIVE: Familial hypercholesterolaemia (FH) affects 1 in 500 people in the UK population and is associated with premature morbidity and mortality from coronary heart disease. In 2008, National Institute for Health and Care Excellence (NICE) recommended genetic testing of potential FH index cases and cascade testing of their relatives. Commissioners have been slow to respond although there is strong evidence of cost and clinical effectiveness. Our study quantifies the recent reduced cost of providing a FH service using generic atorvastatin and compares NICE costing estimates with three suggested alternative models of care (a specialist-led service, a dual model service where general practitioners (GPs) can access specialist advice, and a GP-led service).METHODS: Revision of existing 3?year costing template provided by NICE for FH services, and prediction of costs for running a programme over 10?years. Costs were modelled for the first population-based FH service in England which covers Southampton, Hampshire, Isle of Wight and Portsmouth (SHIP). Population 1.95 million.RESULTS: With expiry of the Lipitor (Pfizer atorvastatin) patent the cost of providing a 10-year FH service in SHIP reduces by 42.5% (£4.88 million on patent vs £2.80 million off patent). Further cost reductions are possible as a result of the reduced cost of DNA testing, more management in general practice, and lower referral rates to specialists. For instance a dual-care model with GP management of patients supported by specialist advice when required, costs £1.89 million.CONCLUSIONS: The three alternative models of care are now <50% of the cost of the original estimates undertaken by NICE

    Nested subcritical flows within supercritical systems

    Get PDF
    In supercritical systems the design inlet and outlet pressures are maintained above the thermaodynamic critical pressure P sub C. Designers rely on this simple rule of thumb to circumvent problems associated with a subcritical pressure regime nested within the supercritical pressure system along with the uncertainties in heat transfer, fluid mechanics, and thermophysical property variations. The simple rule of thumb is adequate in many low-power designs but is inadequate for high-performance turbomachines and linear systems, where nested two-phase regions can exist. Examples for a free-jet expansion with backpressure greater than P sub C and a rotor (bearing) with ambient pressure greater than P sub C illustrate the existence of subcritical pressure regimes nested within supercritical systems

    Effects of atmospheric CO2 on photosynthetic characteristics of soybean leaves

    Get PDF
    Soybean (Glycine max. cv. McCall) plants were grown at 500, 1000, and 2000 umol mol (exp -1) CO2 for 35 days with a photosynthetic photon flux of 300 umol m (exp -2) s (-1). Individual leaves were exposed to step changes of photosynthetic photon flux to study CO2 assimilation rates (CAR), i.e., leaf net photosynthesis. In general, CAR increased when CO2 increased from 500 to 1000 umol mol (exp -1), but not from 1000 to 2000 umol mol (exp -1). Regardless of the CO2 level, all leaves showed similar CAR at similar CO2 and PPF. This observation contrasts with reports that plants tend to become 'lazy' at elevated CO2 levels over time. Although leaf stomatal conductance (to water vapor) showed diurnal rhythms entrained to the photoperiod, leaf CAR did not show these rhythms and remained constant across the light period, indicating that stomatal conductance had little effect on CAR. Such measurements suggest that short-term changes in CO2 exchange dynamics for a controlled ecological life support system can be closely predicted for an actively growing soybean crop
    corecore