2,884 research outputs found

    Instrument to collect fogwater for chemical analysis

    Get PDF
    An instrument is presented which collects large samples of ambient fogwater by impaction of droplets on a screen. The collection efficiency of the instrument is determined as a function of droplet size, and it is shown that fog droplets in the range 3–100-µm diameter are efficiently collected. No significant evaporation or condensation occurs at any stage of the collection process. Field testing indicates that samples collected are representative of the ambient fogwater. The instrument may easily be automated, and is suitable for use in routine air quality monitoring programs

    The H_2SO_4-HNO_3-NH_3 System at High Humidities and in Fogs: 1. Spatial and Temporal Patterns in the San Joaquin Valley of California

    Get PDF
    A systematic characterization of the atmospheric H_2SO_4-HNO_3-NH_3 system was conducted in the fog water, the aerosol, and the gas phase at a network of sites in the San Joaquin Valley of California. Spatial patterns of concentrations were established that reflect the distribution of SO_2, NO_x, and NH_3 emissions within the valley. The concept of atmospheric alkalinity was introduced to interpret these concentrations in terms of the buffering capacity of the atmosphere with respect to inputs of strong acids. Regions of predominantly acidic and alkaline fog water were identified. Fog water was found to be alkaline in most of the valley, but small changes in emission budgets could lead to widespread acid fog. An extended stagnation episode was studied in detail: progressive accumulation of H_2SO_4-HNO_3-NH_3 species was documented over the course of the episode and interpreted in terms of production and removal mechanisms. Secondary production of strong acids H_2SO_4 and HNO_3 under stagnant conditions resulted in a complete titration of available alkalinity at the sites farthest from NH_3 sources. A steady SO_2 conversion rate of 0.4–1.1% h^(−1) was estimated in the stagnant mixed layer under overcast conditions and was attributed to nonphotochemical heterogeneous processes. Removal of SO_2 was enhanced in fog, compared to nonfoggy conditions. Conversion of NO_x to HNO_3 slowed down during the stagnation episode because of reduced photochemical activity; fog did not appear to enhance conversion of NO_x. Decreases in total HNO_3 concentrations were observed upon acidification of the atmosphere and were attributed to displacement of NO_3− by H_2SO_4 in the aerosol, followed by rapid deposition of HNO_3(g). The occurrence of fog was associated with general decreases of aerosol concentrations due to enhanced removal by deposition

    Rituximab monitoring and redosing in pediatric neuromyelitis optica spectrum disorder.

    Get PDF
    Abstract OBJECTIVE: To study rituximab in pediatric neuromyelitis optica (NMO)/NMO spectrum disorders (NMOSD) and the relationship between rituximab, B cell repopulation, and relapses in order to improve rituximab monitoring and redosing. METHODS: Multicenter retrospective study of 16 children with NMO/NMOSD receiving 652 rituximab courses. According to CD19 counts, events during rituximab were categorized as "repopulation," "depletion," or "depletion failure" relapses (repopulation threshold CD19 6510 7 10(6) cells/L). RESULTS: The 16 patients (14 girls; mean age 9.6 years, range 1.8-15.3) had a mean of 6.1 events (range 1-11) during a mean follow-up of 6.1 years (range 1.6-13.6) and received a total of 76 rituximab courses (mean 4.7, range 2-9) in 42.6-year cohort treatment. Before rituximab, 62.5% had received azathioprine, mycophenolate mofetil, or cyclophosphamide. Mean time from rituximab to last documented B cell depletion and first repopulation was 4.5 and 6.8 months, respectively, with large interpatient variability. Earliest repopulations occurred with the lowest doses. Significant reduction between pre- and post-rituximab annualized relapse rate (ARR) was observed (p = 0.003). During rituximab, 6 patients were relapse-free, although 21 relapses occurred in 10 patients, including 13 "repopulation," 3 "depletion," and 4 "depletion failure" relapses. Of the 13 "repopulation" relapses, 4 had CD19 10-50 7 10(6) cells/L, 10 had inadequate monitoring ( 641 CD19 in the 4 months before relapses), and 5 had delayed redosing after repopulation detection. CONCLUSION: Rituximab is effective in relapse prevention, but B cell repopulation creates a risk of relapse. Redosing before B cell repopulation could reduce the relapse risk further. CLASSIFICATION OF EVIDENCE: This study provides Class IV evidence that rituximab significantly reduces ARR in pediatric NMO/NMOSD. This study also demonstrates a relationship between B cell repopulation and relapses

    Fogwater chemistry in an urban atmosphere

    Get PDF
    Analyses of fogwater collected by inertial impaction in the Los Angeles basin and the San Joaquin Valley indicated unusually high concentrations of major and minor ions. The dominant ions measured were NO_3^−, SO_4^(2−), NH_4^+, and H^+. Nitrate exceeded sulfate on an equivalent basis by a factor of 2.5 in the central and coastal regions of the Los Angeles basin but was approximately equal in the eastern Los Angeles basin and the San Joaquin Valley. Maximum observed values for NH_4^+, NO_3^−, and SO_4^(2−) were 10.0, 12.0, and 5.0, meq 1^(−1), while the lowest p;H observed was 2.2. Iron and lead concentrations of over 0.1 mM and 0.01 mM, respectively, were observed. High concentrations of chemical components in fog appeared to correlate well with the occurrence of smog events. Concentrations in fogwater were also affected by the physical processes of condensation and evaporation. Light, dissipating fogs routinely showed the highest concentrations

    The H_2SO_4-HNO_3-NH_3 System at High Humidities and in Fogs: 2. Comparison of Field Data With Thermodynamic Calculations

    Get PDF
    Concentrations of HNO_3(g) and NH_3(g) determined in the field were compared to predictions from aerosol equilibrium models. The products of HNO_3(g) and NH_3(g) concentrations measured under cool and humid nonfoggy conditions agreed in magnitude with predictions from a comprehensive thermodynamic model for the atmospheric H_2SO_4-HNO_3-NH_3-H_2O system. Observed concentrations of NH_3(g) in fogs were generally consistent with those predicted at equilibrium with fog water, but important discrepancies were noted in some cases. These discrepancies may be due to fluctuations in fog water composition over the course of sample collection or to the sampling of nonfoggy pockets of air present within the fog. Detectable concentrations of HNO_3(g) (up to 23 neq m^(−3)) were often found in fogs with pH 5 were below the detection limit of 4–8 neq m^(−3)

    Photodegradation modifies microplastic effects on soil properties and plant performance

    Get PDF
    1. Microplastics (MPs) in soil affect plant–soil systems depending on their shape and polymer type. However, previous research has not yet considered the effects of degraded plastics, which are the plastic materials actually present in the environment. 2. We selected eight MPs representing different shapes (fibres, films and foams) and polymer types, and exposed them to UV-C degradation. Each MP was mixed with soil at a concentration of 0.4% (w/w). The phytometer Daucus carota grew in each pot. At harvest, soil properties and plant biomass were measured. 3. Photodegradation altered MP physical and chemical properties, impacting plant–soil systems. MP degradation effects on plant and soil were observed with fibres and foams, but there were negligible effects with films. The latter could be explained by the polymer structure of films and manufacturer's additives, potentially delaying their degradation. 4. Degraded fibres increased soil respiration more than their non-degraded counterparts, as photodegradation increased the positive effects of fibres on soil water retention. The emergence of oxygenated groups during degradation may have increased the hydrophilicity of fibres, enhancing their ability to retain water. Degraded foams increased soil respiration, which could be related to the possible leaching of organic substances with lower partition coefficients, which may promote soil microbial activity. 5. In contrast, degraded foams decreased soil aggregation, likely as degradation produced larger holes increasing their permeability. Also, the increase in hydrophilic molecules could have decreased soil particle cohesiveness. Degraded fibres and foams increased shoot and root mass as a result of MP effects on soil properties. Photodegraded MPs affected root traits, which could be linked to MP effects on soil water status and plant coping strategies. 6. Synthesis and applications. Photodegradation can intensify the effects that microplastics (MPs) have on plant–soil systems, which would have frequently been underestimated had we only worked with pristine MPs. Plastic companies, agricultural practitioners and researchers should consider that plastics are being degraded as they enter the soil. Policies should promote practices to minimize MP accumulation in soils and ensure their proper disposal

    dc readout experiment at the Caltech 40m prototype interferometer

    Get PDF
    The Laser Interferometer Gravitational Wave Observatory (LIGO) operates a 40m prototype interferometer on the Caltech campus. The primary mission of the prototype is to serve as an experimental testbed for upgrades to the LIGO interferometers and for gaining experience with advanced interferometric techniques, including detuned resonant sideband extraction (i.e. signal recycling) and dc readout (optical homodyne detection). The former technique will be employed in Advanced LIGO, and the latter in both Enhanced and Advanced LIGO. Using dc readout for gravitational wave signal extraction has several technical advantages, including reduced laser and oscillator noise couplings as well as reduced shot noise, when compared to the traditional rf readout technique (optical heterodyne detection) currently in use in large-scale ground-based interferometric gravitational wave detectors. The Caltech 40m laboratory is currently prototyping a dc readout system for a fully suspended interferometric gravitational wave detector. The system includes an optical filter cavity at the interferometer's output port, and the associated controls and optics to ensure that the filter cavity is optimally coupled to the interferometer. We present the results of measurements to characterize noise couplings in rf and dc readout using this system

    Supernova 2007bi as a pair-instability explosion

    Get PDF
    Stars with initial masses 10 M_{solar} < M_{initial} < 100 M_{solar} fuse progressively heavier elements in their centres, up to inert iron. The core then gravitationally collapses to a neutron star or a black hole, leading to an explosion -- an iron-core-collapse supernova (SN). In contrast, extremely massive stars (M_{initial} > 140 M_{solar}), if such exist, have oxygen cores which exceed M_{core} = 50 M_{solar}. There, high temperatures are reached at relatively low densities. Conversion of energetic, pressure-supporting photons into electron-positron pairs occurs prior to oxygen ignition, and leads to a violent contraction that triggers a catastrophic nuclear explosion. Tremendous energies (>~ 10^{52} erg) are released, completely unbinding the star in a pair-instability SN (PISN), with no compact remnant. Transitional objects with 100 M_{solar} < M_{initial} < 140 M_{solar}, which end up as iron-core-collapse supernovae following violent mass ejections, perhaps due to short instances of the pair instability, may have been identified. However, genuine PISNe, perhaps common in the early Universe, have not been observed to date. Here, we present our discovery of SN 2007bi, a luminous, slowly evolving supernova located within a dwarf galaxy (~1% the size of the Milky Way). We measure the exploding core mass to be likely ~100 M_{solar}, in which case theory unambiguously predicts a PISN outcome. We show that >3 M_{solar} of radioactive 56Ni were synthesized, and that our observations are well fit by PISN models. A PISN explosion in the local Universe indicates that nearby dwarf galaxies probably host extremely massive stars, above the apparent Galactic limit, perhaps resulting from star formation processes similar to those that created the first stars in the Universe.Comment: Accepted version of the paper appearing in Nature, 462, 624 (2009), including all supplementary informatio

    Characterization of Reactants Reaction Mechanisms and Reaction Products Leading to Extreme Acid Rain and Acid Aerosol Conditions in Southern California

    Get PDF
    Analyses of fogwater collected by inertial impaction in the Los Angeles basin and the San Joaquin Valley indicated unusually high concentrations of major and minor ions. The dominant ions measured were NO_3^-, SO_4^(2-), NH_4^+ and H^+ Nitrate exceeded sulfate on an equivalent basis by a factor of 2.5 in the central and coastal regions of the Los Angeles basin, but was approximately equal in the eastern Los Angeles basin and the San Joaquin Valley. Maximum observed values for NH_4^+, NO_3^- and SO_4^(2-) were 10., 12., and 5. meq L^(-1), while the lowest pH observed was 2.2. Iron and lead concentrations over 0.1 mM and 0.01 mM, respectively, were observed. High concentrations of chemical components in fog appeared to correlate well with the occurrence of smog events. Concentrations in fogwater were also affected by the physical processes of condensation and evaporation. Light, dissipating fogs routinely showed the highest concentrations. The chemistry of urban fog has been modelled using a hybrid kinetic and equilibrium computer code. Extreme acidity found in Southern California fog may be due either to condensation and growth on acidic condensation nuclei or in situ S(IV) oxidation. Important oxidants of S(IV) were found to be O_2 as catalyzed by Fe(III) and Mn(II), H_2)_2 and 0_3. formation of hydroxymethane sulfonate ion (HMSA) via the nucleophilic addition of HSO_3^-to CH_2 CH_2O(â„“) significantly increased the droplet capacity for S(IV) but did not slow down the net S(IV) oxidation rate leading to fog acidification. Gas phase nitric acid, ammonia and hydrogen peroxide were scavenged efficiently, although aqueous phase hydrogen peroxide was depleted rapidly by reduction with S(IV). Nitrate production in the aqueous phase was found to be dominated by HNO_3 gas phase scavenging. Major aqueous-phase species concentrations were controlled primarily by condensation, evaporation, and pH
    • …
    corecore