16,303 research outputs found
Mechanism of enhanced light output in InGaN-based microlight emitting diodes
Micro-light emitting diode (LED) arrays with diameters of 4 to 20 mum have been fabricated and were found to be much more efficient light emitters compared to their broad-area counterparts, with up to five times enhancement in optical power densities. The possible mechanisms responsible for the improvement in performance were investigated. Strain relaxation in the microstructures as measured by Raman spectroscopy was not observed, arguing against theories of an increase in internal quantum efficiency due to a reduction of the piezoelectric field put forward by other groups. Optical microscope images show intense light emission at the periphery of the devices, as a result of light scattering off the etched sidewalls. This increases the extraction efficiency relative to broad area devices and boosts the forward optical output. In addition, spectra of the forward emitted light reveal the presence of resonant cavity modes [whispering gallery (WG) modes in particular] which appear to play a role in enhancing the optical output
InGaN nano-ring structures for high-efficiency light emitting diodes
A technique based on the Fresnel diffraction effect for the fabrication of nano-scale site-controlled ring structures in InGaN/GaN multi-quantum well structures has been demonstrated. The ring structures have an internal diameter of 500 nm and a wall width of 300 nm. A 1 cm-1 Raman shift has been measured, signifying substantial strain relaxation from the fabricated structure. The 9 nm blueshift observed in the cathodoluminescence spectra can be attributed to band filling and/or screening of the piezoelectric field. A light emitting diode based on this geometry has been demonstrated
Abell 1033: birth of a radio phoenix
Extended steep-spectrum radio emission in a galaxy cluster is usually
associated with a recent merger. However, given the complex scenario of galaxy
cluster mergers, many of the discovered sources hardly fit into the strict
boundaries of a precise taxonomy. This is especially true for radio phoenixes
that do not have very well defined observational criteria. Radio phoenixes are
aged radio galaxy lobes whose emission is reactivated by compression or other
mechanisms. Here, we present the detection of a radio phoenix close to the
moment of its formation. The source is located in Abell 1033, a peculiar galaxy
cluster which underwent a recent merger. To support our claim, we present
unpublished Westerbork Synthesis Radio Telescope and Chandra observations
together with archival data from the Very Large Array and the Sloan Digital Sky
Survey. We discover the presence of two sub-clusters displaced along the N-S
direction. The two sub-clusters probably underwent a recent merger which is the
cause of a moderately perturbed X-ray brightness distribution. A steep-spectrum
extended radio source very close to an AGN is proposed to be a newly born radio
phoenix: the AGN lobes have been displaced/compressed by shocks formed during
the merger event. This scenario explains the source location, morphology,
spectral index, and brightness. Finally, we show evidence of a density
discontinuity close to the radio phoenix and discuss the consequences of its
presence.Comment: accepted MNRA
Restrictions on Transversal Encoded Quantum Gate Sets
Transversal gates play an important role in the theory of fault-tolerant
quantum computation due to their simplicity and robustness to noise. By
definition, transversal operators do not couple physical subsystems within the
same code block. Consequently, such operators do not spread errors within code
blocks and are, therefore, fault tolerant. Nonetheless, other methods of
ensuring fault tolerance are required, as it is invariably the case that some
encoded gates cannot be implemented transversally. This observation has led to
a long-standing conjecture that transversal encoded gate sets cannot be
universal. Here we show that the ability of a quantum code to detect an
arbitrary error on any single physical subsystem is incompatible with the
existence of a universal, transversal encoded gate set for the code.Comment: 4 pages, v2: minor change
Determining the Sign of the Z-Penguin Amplitude
We point out that the precision measurements of the pseudo observables R_b^0,
A_b, and A_FB^0,b performed at LEP and SLC suggest that in models with
minimal-flavor-violation the sign of the Z-penguin amplitude is identical to
the one present in the standard model. We determine the allowed range for the
non-standard contribution to the Inami-Lim function C and show by analyzing
possible scenarios with positive and negative interference of standard model
and new physics contributions, that the derived bound holds in each given case.
Finally, we derive lower and upper limits for the branching ratios of K^+ ->
pi^+ nu nubar, K_L -> pi^0 nu nubar, K_L -> mu^+ mu^-, B -> X_d,s nu nubar, and
B_d,s -> mu^+ mu^- within constrained minimal-flavor-violation making use of
the wealth of available data collected at the Z-pole.Comment: 20 pages, 5 pdf figures, 5 tables, uses pdflatex; further typos
corrected, matches PRD versio
On Lattice Computations of K+ --> pi+ pi0 Decay at m_K =2m_pi
We use one-loop chiral perturbation theory to compare potential lattice
computations of the K+ --> pi+ pi0 decay amplitude at m_K=2m_pi with the
experimental value. We find that the combined one-loop effect due to this
unphysical pion to kaon mass ratio and typical finite volume effects is still
of order minus 20-30%, and appears to dominate the effects from quenching.Comment: 4 pages, revte
Crossover behavior and multi-step relaxation in a schematic model of the cut-off glass transition
We study a schematic mode-coupling model in which the ideal glass transition
is cut off by a decay of the quadratic coupling constant in the memory
function. (Such a decay, on a time scale tau_I, has been suggested as the
likely consequence of activated processes.) If this decay is complete, so that
only a linear coupling remains at late times, then the alpha relaxation shows a
temporal crossover from a relaxation typical of the unmodified schematic model
to a final strongly slower-than-exponential relaxation. This crossover, which
differs somewhat in form from previous schematic models of the cut-off glass
transition, resembles light-scattering experiments on colloidal systems, and
can exhibit a `slower-than-alpha' relaxation feature hinted at there. We also
consider what happens when a similar but incomplete decay occurs, so that a
significant level of quadratic coupling remains for t>>tau_I. In this case the
correlator acquires a third, weaker relaxation mode at intermediate times. This
empirically resembles the beta process seen in many molecular glass formers. It
disappears when the initial as well as the final quadratic coupling lies on the
liquid side of the glass transition, but remains present even when the final
coupling is only just inside the liquid (so that the alpha relaxation time is
finite, but too long to measure). Our results are suggestive of how, in a
cut-off glass, the underlying `ideal' glass transition predicted by
mode-coupling theory can remain detectable through qualitative features in
dynamics.Comment: 14 pages revtex inc 10 figs; submitted to pr
Dynamics in Colloidal Liquids near a Crossing of Glass- and Gel-Transition Lines
Within the mode-coupling theory for ideal glass-transitions, the mean-squared
displacement and the correlation function for density fluctuations are
evaluated for a colloidal liquid of particles interacting with a square-well
potential for states near the crossing of the line for transitions to a gel
with the line for transitions to a glass. It is demonstrated how the dynamics
is ruled by the interplay of the mechanisms of arrest due to hard-core
repulsion and due to attraction-induced bond formation as well as by a nearby
higher-order glass-transition singularity. Application of the universal
relaxation laws for the slow dynamics near glass-transition singularities
explains the qualitative features of the calculated time dependence of the
mean-squared displacement, which are in accord with the findings obtained in
molecular-dynamics simulation studies by Zaccarelli et. al [Phys. Rev. E 66,
041402 (2002)]. Correlation functions found by photon-correlation spectroscopy
in a micellar system by Mallamace et. al [Phys. Rev. Lett. 84, 5431 2000)] can
be interpreted qualitatively as a crossover from gel to glass dynamics.Comment: 13 pages, 12 figure
A relational quantum computer using only two-qubit total spin measurement and an initial supply of highly mixed single qubit states
We prove that universal quantum computation is possible using only (i) the
physically natural measurement on two qubits which distinguishes the singlet
from the triplet subspace, and (ii) qubits prepared in almost any three
different (potentially highly mixed) states. In some sense this measurement is
a `more universal' dynamical element than a universal 2-qubit unitary gate,
since the latter must be supplemented by measurement. Because of the rotational
invariance of the measurement used, our scheme is robust to collective
decoherence in a manner very different to previous proposals - in effect it is
only ever sensitive to the relational properties of the qubits.Comment: TR apologises for yet again finding a coauthor with a ridiculous
middle name [12
An absolute quantum energy inequality for the Dirac field in curved spacetime
Quantum Weak Energy Inequalities (QWEIs) are results which limit the extent
to which the smeared renormalised energy density of a quantum field can be
negative. On globally hyperbolic spacetimes the massive quantum Dirac field is
known to obey a QWEI in terms of a reference state chosen arbitrarily from the
class of Hadamard states; however, there exist spacetimes of interest on which
state-dependent bounds cannot be evaluated. In this paper we prove the first
QWEI for the massive quantum Dirac field on four dimensional globally
hyperbolic spacetime in which the bound depends only on the local geometry;
such a QWEI is known as an absolute QWEI
- …