4,029 research outputs found

    Dynamical Casimir effect for gravitons in bouncing braneworlds

    Full text link
    We consider a two-brane system in a five-dimensional anti-de Sitter spacetime. We study particle creation due to the motion of the physical brane which first approaches the second static brane (contraction) and then recedes from it(expansion). The spectrum and the energy density of the generated gravitons are calculated. We show that the massless gravitons have a blue spectrum and that their energy density satisfies the nucleosynthesis bound with very mild constraints on the parameters. We also show that the Kaluza-Klein modes cannot provide the dark matter in an anti-de-Sitter braneworld. However, for natural choices of parameters, backreaction from the Kaluza-Klein gravitons may well become important. The main findings of this work have been published in the form of a Letter [R. Durrer and M. Ruser, Phys. Rev. Lett. 99, 071601 (2007), arXiv:0704.0756].Comment: 40 pages, 34 figures, improved and extended version, matches published versio

    Two-dimensional super Yang-Mills theory investigated with improved resolution

    Get PDF
    In earlier work, N=(1,1) super Yang--Mills theory in two dimensions was found to have several interesting properties, though these properties could not be investigated in any detail. In this paper we analyze two of these properties. First, we investigate the spectrum of the theory. We calculate the masses of the low-lying states using the supersymmetric discrete light-cone (SDLCQ) approximation and obtain their continuum values. The spectrum exhibits an interesting distribution of masses, which we discuss along with a toy model for this pattern. We also discuss how the average number of partons grows in the bound states. Second, we determine the number of fermions and bosons in the N=(1,1) and N=(2,2) theories in each symmetry sector as a function of the resolution. Our finding that the numbers of fermions and bosons in each sector are the same is part of the answer to the question of why the SDLCQ approximation exactly preserves supersymmetry.Comment: 20 pages, 10 figures, LaTe

    Spontaneous symmetry breaking of (1+1)-dimensional ϕ4\bf \phi^4 theory in light-front field theory (III)

    Full text link
    We investigate (1+1)-dimensional ϕ4\phi^4 field theory in the symmetric and broken phases using discrete light-front quantization. We calculate the perturbative solution of the zero-mode constraint equation for both the symmetric and broken phases and show that standard renormalization of the theory yields finite results. We study the perturbative zero-mode contribution to two diagrams and show that the light-front formulation gives the same result as the equal-time formulation. In the broken phase of the theory, we obtain the nonperturbative solutions of the constraint equation and confirm our previous speculation that the critical coupling is logarithmically divergent. We discuss the renormalization of this divergence but are not able to find a satisfactory nonperturbative technique. Finally we investigate properties that are insensitive to this divergence, calculate the critical exponent of the theory, and find agreement with mean field theory as expected.Comment: 21 pages; OHSTPY-HEP-TH-94-014 and DOE/ER/01545-6

    N=(1,1) super Yang--Mills theory in 1+1 dimensions at finite temperature

    Full text link
    We present a formulation of N=(1,1) super Yang-Mills theory in 1+1 dimensions at finite temperature. The partition function is constructed by finding a numerical approximation to the entire spectrum. We solve numerically for the spectrum using Supersymmetric Discrete Light-Cone Quantization (SDLCQ) in the large-N_c approximation and calculate the density of states. We find that the density of states grows exponentially and the theory has a Hagedorn temperature, which we extract. We find that the Hagedorn temperature at infinite resolution is slightly less than one in units of (g^(2) N_c/pi)^(1/2). We use the density of states to also calculate a standard set of thermodynamic functions below the Hagedorn temperature. In this temperature range, we find that the thermodynamics is dominated by the massless states of the theory.Comment: 16 pages, 8 eps figures, LaTe

    Quantum Mechanics of Dynamical Zero Mode in QCD1+1QCD_{1+1} on the Light-Cone

    Get PDF
    Motivated by the work of Kalloniatis, Pauli and Pinsky, we consider the theory of light-cone quantized QCD1+1QCD_{1+1} on a spatial circle with periodic and anti-periodic boundary conditions on the gluon and quark fields respectively. This approach is based on Discretized Light-Cone Quantization (DLCQ). We investigate the canonical structures of the theory. We show that the traditional light-cone gauge A=0A_- = 0 is not available and the zero mode (ZM) is a dynamical field, which might contribute to the vacuum structure nontrivially. We construct the full ground state of the system and obtain the Schr\"{o}dinger equation for ZM in a certain approximation. The results obtained here are compared to those of Kalloniatis et al. in a specific coupling region.Comment: 19 pages, LaTeX file, no figure

    (1+1)-Dimensional Yang-Mills Theory Coupled to Adjoint Fermions on the Light Front

    Get PDF
    We consider SU(2) Yang-Mills theory in 1+1 dimensions coupled to massless adjoint fermions. With all fields in the adjoint representation the gauge group is actually SU(2)/Z_2, which possesses nontrivial topology. In particular, there are two distinct topological sectors and the physical vacuum state has a structure analogous to a \theta vacuum. We show how this feature is realized in light-front quantization, with periodicity conditions used to regulate the infrared and treating the gauge field zero mode as a dynamical quantity. We find expressions for the degenerate vacuum states and construct the analog of the \theta vacuum. We then calculate the bilinear condensate in the model. We argue that the condensate does not affect the spectrum of the theory, although it is related to the string tension that characterizes the potential between fundamental test charges when the dynamical fermions are given a mass. We also argue that this result is fundamentally different from calculations that use periodicity conditions in x^1 as an infrared regulator.Comment: 20 pages, Revte

    Renormalization of Tamm-Dancoff Integral Equations

    Full text link
    During the last few years, interest has arisen in using light-front Tamm-Dancoff field theory to describe relativistic bound states for theories such as QCD. Unfortunately, difficult renormalization problems stand in the way. We introduce a general, non-perturbative approach to renormalization that is well suited for the ultraviolet and, presumably, the infrared divergences found in these systems. We reexpress the renormalization problem in terms of a set of coupled inhomogeneous integral equations, the ``counterterm equation.'' The solution of this equation provides a kernel for the Tamm-Dancoff integral equations which generates states that are independent of any cutoffs. We also introduce a Rayleigh-Ritz approach to numerical solution of the counterterm equation. Using our approach to renormalization, we examine several ultraviolet divergent models. Finally, we use the Rayleigh-Ritz approach to find the counterterms in terms of allowed operators of a theory.Comment: 19 pages, OHSTPY-HEP-T-92-01

    On Zero Modes and the Vacuum Problem -- A Study of Scalar Adjoint Matter in Two-Dimensional Yang-Mills Theory via Light-Cone Quantisation

    Get PDF
    SU(2) Yang-Mills Theory coupled to massive adjoint scalar matter is studied in (1+1) dimensions using Discretised Light-Cone Quantisation. This theory can be obtained from pure Yang-Mills in 2+1 dimensions via dimensional reduction. On the light-cone, the vacuum structure of this theory is encoded in the dynamical zero mode of a gluon and a constrained mode of the scalar field. The latter satisfies a linear constraint, suggesting no nontrivial vacua in the present paradigm for symmetry breaking on the light-cone. I develop a diagrammatic method to solve the constraint equation. In the adiabatic approximation I compute the quantum mechanical potential governing the dynamical gauge mode. Due to a condensation of the lowest omentum modes of the dynamical gluons, a centrifugal barrier is generated in the adiabatic potential. In the present theory however, the barrier height appears too small to make any impact in this odel. Although the theory is superrenormalisable on naive powercounting grounds, the removal of ultraviolet divergences is nontrivial when the constrained mode is taken into account. The open aspects of this problem are discussed in detail.Comment: LaTeX file, 26 pages. 14 postscript figure

    Variational Calculation of the Effective Action

    Get PDF
    An indication of spontaneous symmetry breaking is found in the two-dimensional λϕ4\lambda\phi^4 model, where attention is paid to the functional form of an effective action. An effective energy, which is an effective action for a static field, is obtained as a functional of the classical field from the ground state of the hamiltonian H[J]H[J] interacting with a constant external field. The energy and wavefunction of the ground state are calculated in terms of DLCQ (Discretized Light-Cone Quantization) under antiperiodic boundary conditions. A field configuration that is physically meaningful is found as a solution of the quantum mechanical Euler-Lagrange equation in the J0J\to 0 limit. It is shown that there exists a nonzero field configuration in the broken phase of Z2Z_2 symmetry because of a boundary effect.Comment: 26 pages, REVTeX, 7 postscript figures, typos corrected and two references adde

    Spontaneous Symmetry Breaking of phi4(1+1) in Light Front Field Theory

    Full text link
    We study spontaneous symmetry breaking in phi^4_(1+1) using the light-front formulation of the field theory. Since the physical vacuum is always the same as the perturbative vacuum in light-front field theory the fields must develop a vacuum expectation value through the zero-mode components of the field. We solve the nonlinear operator equation for the zero-mode in the one-mode approximation. We find that spontaneous symmetry breaking occurs at lambda_critical = 4 pi(3+sqrt 3), which is consistent with the value lambda_critical = 54.27 obtained in the equal time theory. We calculate the value of the vacuum expectation value as a function of the coupling constant in the broken phase both numerically and analytically using the delta expansion. We find two equivalent broken phases. Finally we show that the energy levels of the system have the expected behavior within the broken phase.Comment: 17 pages, OHSTPY-HEP-TH-92-02
    corecore