4,029 research outputs found
Dynamical Casimir effect for gravitons in bouncing braneworlds
We consider a two-brane system in a five-dimensional anti-de Sitter
spacetime. We study particle creation due to the motion of the physical brane
which first approaches the second static brane (contraction) and then recedes
from it(expansion). The spectrum and the energy density of the generated
gravitons are calculated. We show that the massless gravitons have a blue
spectrum and that their energy density satisfies the nucleosynthesis bound with
very mild constraints on the parameters. We also show that the Kaluza-Klein
modes cannot provide the dark matter in an anti-de-Sitter braneworld. However,
for natural choices of parameters, backreaction from the Kaluza-Klein gravitons
may well become important. The main findings of this work have been published
in the form of a Letter [R. Durrer and M. Ruser, Phys. Rev. Lett. 99, 071601
(2007), arXiv:0704.0756].Comment: 40 pages, 34 figures, improved and extended version, matches
published versio
Two-dimensional super Yang-Mills theory investigated with improved resolution
In earlier work, N=(1,1) super Yang--Mills theory in two dimensions was found
to have several interesting properties, though these properties could not be
investigated in any detail. In this paper we analyze two of these properties.
First, we investigate the spectrum of the theory. We calculate the masses of
the low-lying states using the supersymmetric discrete light-cone (SDLCQ)
approximation and obtain their continuum values. The spectrum exhibits an
interesting distribution of masses, which we discuss along with a toy model for
this pattern. We also discuss how the average number of partons grows in the
bound states. Second, we determine the number of fermions and bosons in the
N=(1,1) and N=(2,2) theories in each symmetry sector as a function of the
resolution. Our finding that the numbers of fermions and bosons in each sector
are the same is part of the answer to the question of why the SDLCQ
approximation exactly preserves supersymmetry.Comment: 20 pages, 10 figures, LaTe
Spontaneous symmetry breaking of (1+1)-dimensional theory in light-front field theory (III)
We investigate (1+1)-dimensional field theory in the symmetric and
broken phases using discrete light-front quantization. We calculate the
perturbative solution of the zero-mode constraint equation for both the
symmetric and broken phases and show that standard renormalization of the
theory yields finite results. We study the perturbative zero-mode contribution
to two diagrams and show that the light-front formulation gives the same result
as the equal-time formulation. In the broken phase of the theory, we obtain the
nonperturbative solutions of the constraint equation and confirm our previous
speculation that the critical coupling is logarithmically divergent. We discuss
the renormalization of this divergence but are not able to find a satisfactory
nonperturbative technique. Finally we investigate properties that are
insensitive to this divergence, calculate the critical exponent of the theory,
and find agreement with mean field theory as expected.Comment: 21 pages; OHSTPY-HEP-TH-94-014 and DOE/ER/01545-6
N=(1,1) super Yang--Mills theory in 1+1 dimensions at finite temperature
We present a formulation of N=(1,1) super Yang-Mills theory in 1+1 dimensions
at finite temperature. The partition function is constructed by finding a
numerical approximation to the entire spectrum. We solve numerically for the
spectrum using Supersymmetric Discrete Light-Cone Quantization (SDLCQ) in the
large-N_c approximation and calculate the density of states. We find that the
density of states grows exponentially and the theory has a Hagedorn
temperature, which we extract. We find that the Hagedorn temperature at
infinite resolution is slightly less than one in units of (g^(2) N_c/pi)^(1/2).
We use the density of states to also calculate a standard set of thermodynamic
functions below the Hagedorn temperature. In this temperature range, we find
that the thermodynamics is dominated by the massless states of the theory.Comment: 16 pages, 8 eps figures, LaTe
Quantum Mechanics of Dynamical Zero Mode in on the Light-Cone
Motivated by the work of Kalloniatis, Pauli and Pinsky, we consider the
theory of light-cone quantized on a spatial circle with periodic
and anti-periodic boundary conditions on the gluon and quark fields
respectively. This approach is based on Discretized Light-Cone Quantization
(DLCQ). We investigate the canonical structures of the theory. We show that the
traditional light-cone gauge is not available and the zero mode (ZM)
is a dynamical field, which might contribute to the vacuum structure
nontrivially. We construct the full ground state of the system and obtain the
Schr\"{o}dinger equation for ZM in a certain approximation. The results
obtained here are compared to those of Kalloniatis et al. in a specific
coupling region.Comment: 19 pages, LaTeX file, no figure
(1+1)-Dimensional Yang-Mills Theory Coupled to Adjoint Fermions on the Light Front
We consider SU(2) Yang-Mills theory in 1+1 dimensions coupled to massless
adjoint fermions. With all fields in the adjoint representation the gauge group
is actually SU(2)/Z_2, which possesses nontrivial topology. In particular,
there are two distinct topological sectors and the physical vacuum state has a
structure analogous to a \theta vacuum. We show how this feature is realized in
light-front quantization, with periodicity conditions used to regulate the
infrared and treating the gauge field zero mode as a dynamical quantity. We
find expressions for the degenerate vacuum states and construct the analog of
the \theta vacuum. We then calculate the bilinear condensate in the model. We
argue that the condensate does not affect the spectrum of the theory, although
it is related to the string tension that characterizes the potential between
fundamental test charges when the dynamical fermions are given a mass. We also
argue that this result is fundamentally different from calculations that use
periodicity conditions in x^1 as an infrared regulator.Comment: 20 pages, Revte
Renormalization of Tamm-Dancoff Integral Equations
During the last few years, interest has arisen in using light-front
Tamm-Dancoff field theory to describe relativistic bound states for theories
such as QCD. Unfortunately, difficult renormalization problems stand in the
way. We introduce a general, non-perturbative approach to renormalization that
is well suited for the ultraviolet and, presumably, the infrared divergences
found in these systems. We reexpress the renormalization problem in terms of a
set of coupled inhomogeneous integral equations, the ``counterterm equation.''
The solution of this equation provides a kernel for the Tamm-Dancoff integral
equations which generates states that are independent of any cutoffs. We also
introduce a Rayleigh-Ritz approach to numerical solution of the counterterm
equation. Using our approach to renormalization, we examine several ultraviolet
divergent models. Finally, we use the Rayleigh-Ritz approach to find the
counterterms in terms of allowed operators of a theory.Comment: 19 pages, OHSTPY-HEP-T-92-01
On Zero Modes and the Vacuum Problem -- A Study of Scalar Adjoint Matter in Two-Dimensional Yang-Mills Theory via Light-Cone Quantisation
SU(2) Yang-Mills Theory coupled to massive adjoint scalar matter is studied
in (1+1) dimensions using Discretised Light-Cone Quantisation. This theory can
be obtained from pure Yang-Mills in 2+1 dimensions via dimensional reduction.
On the light-cone, the vacuum structure of this theory is encoded in the
dynamical zero mode of a gluon and a constrained mode of the scalar field. The
latter satisfies a linear constraint, suggesting no nontrivial vacua in the
present paradigm for symmetry breaking on the light-cone. I develop a
diagrammatic method to solve the constraint equation. In the adiabatic
approximation I compute the quantum mechanical potential governing the
dynamical gauge mode. Due to a condensation of the lowest omentum modes of the
dynamical gluons, a centrifugal barrier is generated in the adiabatic
potential. In the present theory however, the barrier height appears too small
to make any impact in this odel. Although the theory is superrenormalisable on
naive powercounting grounds, the removal of ultraviolet divergences is
nontrivial when the constrained mode is taken into account. The open aspects of
this problem are discussed in detail.Comment: LaTeX file, 26 pages. 14 postscript figure
Variational Calculation of the Effective Action
An indication of spontaneous symmetry breaking is found in the
two-dimensional model, where attention is paid to the
functional form of an effective action. An effective energy, which is an
effective action for a static field, is obtained as a functional of the
classical field from the ground state of the hamiltonian interacting
with a constant external field. The energy and wavefunction of the ground state
are calculated in terms of DLCQ (Discretized Light-Cone Quantization) under
antiperiodic boundary conditions. A field configuration that is physically
meaningful is found as a solution of the quantum mechanical Euler-Lagrange
equation in the limit. It is shown that there exists a nonzero field
configuration in the broken phase of symmetry because of a boundary
effect.Comment: 26 pages, REVTeX, 7 postscript figures, typos corrected and two
references adde
Spontaneous Symmetry Breaking of phi4(1+1) in Light Front Field Theory
We study spontaneous symmetry breaking in phi^4_(1+1) using the light-front
formulation of the field theory. Since the physical vacuum is always the same
as the perturbative vacuum in light-front field theory the fields must develop
a vacuum expectation value through the zero-mode components of the field. We
solve the nonlinear operator equation for the zero-mode in the one-mode
approximation. We find that spontaneous symmetry breaking occurs at
lambda_critical = 4 pi(3+sqrt 3), which is consistent with the value
lambda_critical = 54.27 obtained in the equal time theory. We calculate the
value of the vacuum expectation value as a function of the coupling constant in
the broken phase both numerically and analytically using the delta expansion.
We find two equivalent broken phases. Finally we show that the energy levels of
the system have the expected behavior within the broken phase.Comment: 17 pages, OHSTPY-HEP-TH-92-02
- …
