39 research outputs found

    Associations between outdoor temperature and markers of inflammation: a cohort study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Associations between ambient temperature and cardiovascular mortality are well established. This study investigated whether inflammation could be part of the mechanism leading to temperature-related cardiovascular deaths.</p> <p>Methods</p> <p>The study population consisted of a cohort of 673 men with mean age of 74.6 years, living in the greater Boston area. They were seen for examination roughly every 4 years, and blood samples for inflammation marker analyses were drawn in 2000-2008 (total of 1254 visits). We used a mixed effects model to estimate the associations between ambient temperature and a variety of inflammation markers (C-reactive protein, white blood cell count, soluble Vascular Cell Adhesion Molecule-1, soluble Intercellular Adhesion Molecule-1, tumor necrosis factor alpha, and interleukins -1β, -6 and -8). Random intercept for each subject and several possible confounders, including combustion-related air pollution and ozone, were used in the models.</p> <p>Results</p> <p>We found a 0 to 1 day lagged and up to 4 weeks cumulative responses in C-reactive protein in association with temperature. We observed a 24.9% increase [95% Confidence interval (CI): 7.36, 45.2] in C-reactive protein for a 5°C decrease in the 4 weeks' moving average of temperature. We observed similar associations also between temperature and soluble Intercellular Adhesion Molecule-1 (4.52%, 95% CI: 1.05, 8.10, over 4 weeks' moving average), and between temperature and soluble Vascular Cell Adhesion Molecule-1 (6.60%, 95% CI: 1.31, 12.2 over 4 weeks' moving average). Penalized spline models showed no deviation from linearity. There were no associations between temperature and other inflammation markers.</p> <p>Conclusions</p> <p>Cumulative exposure to decreased temperature is associated with an increase in inflammation marker levels among elderly men. This suggests that inflammation markers are part of intermediate processes, which may lead to cold-, but not heat-, related cardiovascular deaths.</p

    Short-term consumption of a high-fat diet increases host susceptibility to Listeria monocytogenes infection

    Get PDF
    peer-reviewedBackground A westernized diet comprising a high caloric intake from animal fats is known to influence the development of pathological inflammatory conditions. However, there has been relatively little focus upon the implications of such diets for the progression of infectious disease. Here, we investigated the influence of a high-fat (HF) diet upon parameters that influence Listeria monocytogenes infection in mice. Results We determined that short-term administration of a HF diet increases the number of goblet cells, a known binding site for the pathogen, in the gut and also induces profound changes to the microbiota and promotes a pro-inflammatory gene expression profile in the host. Host physiological changes were concordant with significantly increased susceptibility to oral L. monocytogenes infection in mice fed a HF diet relative to low fat (LF)- or chow-fed animals. Prior to Listeria infection, short-term consumption of HF diet elevated levels of Firmicutes including Coprococcus, Butyricicoccus, Turicibacter and Clostridium XIVa species. During active infection with L. monocytogenes, microbiota changes were further exaggerated but host inflammatory responses were significantly downregulated relative to Listeria-infected LF- or chow-fed groups, suggestive of a profound tempering of the host response influenced by infection in the context of a HF diet. The effects of diet were seen beyond the gut, as a HF diet also increased the sensitivity of mice to systemic infection and altered gene expression profiles in the liver. Conclusions We adopted a systems approach to identify the effects of HF diet upon L. monocytogenes infection through analysis of host responses and microbiota changes (both pre- and post-infection). Overall, the results indicate that short-term consumption of a westernized diet has the capacity to significantly alter host susceptibility to L. monocytogenes infection concomitant with changes to the host physiological landscape. The findings suggest that diet should be a consideration when developing models that reflect human infectious disease.This research was funded by the European Union’s Horizon 2020 Research and Innovation Program under the Marie Skłodowska-Curie grant agreement No. 641984, through funding of the List_MAPS consortium. We also acknowledge funding and support from Science Foundation Ireland (SFI) in the form of a center grant (APC Microbiome Ireland grant SFI/12/RC/2273)

    Fetal and infant origins of asthma

    Get PDF
    Previous studies have suggested that asthma, like other common diseases, has at least part of its origin early in life. Low birth weight has been shown to be associated with increased risks of asthma, chronic obstructive airway disease, and impaired lung function in adults, and increased risks of respiratory symptoms in early childhood. The developmental plasticity hypothesis suggests that the associations between low birth weight and diseases in later life are explained by adaptation mechanisms in fetal life and infancy in response to various adverse exposures. Various pathways leading from adverse fetal and infant exposures to growth adaptations and respiratory health outcomes have been studied, including fetal and early infant growth patterns, maternal smoking and diet, children’s diet, respiratory tract infections and acetaminophen use, and genetic susceptibility. Still, the specific adverse exposures in fetal and early postnatal life leading to respiratory disease in adult life are not yet fully understood. Current studies suggest that both environmental and genetic factors in various periods of life, and their epigenetic mechanisms may underlie the complex associations of low birth weight with respiratory disease in later life. New well-designed epidemiological studies are needed to identify the specific underlying mechanisms. This review is focused on specific adverse fetal and infant growth patterns and exposures, genetic susceptibility, possible respiratory adaptations and perspectives for new studies

    Ambient air pollution and thrombosis

    Get PDF
    Abstract Air pollution is a growing public health concern of global significance. Acute and chronic exposure is known to impair cardiovascular function, exacerbate disease and increase cardiovascular mortality. Several plausible biological mechanisms have been proposed for these associations, however, at present, the pathways are incomplete. A seminal review by the American Heart Association (2010) concluded that the thrombotic effects of particulate air pollution likely contributed to their effects on cardiovascular mortality and morbidity. The aim of the current review is to appraise the newly accumulated scientific evidence (2009–2016) on contribution of haemostasis and thrombosis towards cardiovascular disease induced by exposure to both particulate and gaseous pollutants. Seventy four publications were reviewed in-depth. The weight of evidence suggests that acute exposure to fine particulate matter (PM2.5) induces a shift in the haemostatic balance towards a pro-thrombotic/pro-coagulative state. Insufficient data was available to ascertain if a similar relationship exists for gaseous pollutants, and very few studies have addressed long-term exposure to ambient air pollution. Platelet activation, oxidative stress, interplay between interleukin-6 and tissue factor, all appear to be potentially important mechanisms in pollution-mediated thrombosis, together with an emerging role for circulating microvesicles and epigenetic changes. Overall, the recent literature supports, and arguably strengthens, the contention that air pollution contributes to cardiovascular morbidity by promoting haemostasis. The volume and diversity of the evidence highlights the complexity of the pathophysiologic mechanisms by which air pollution promotes thrombosis; multiple pathways are plausible and it is most likely they act in concert. Future research should address the role gaseous pollutants play in the cardiovascular effects of air pollution mixture and direct comparison of potentially susceptible groups to healthy individuals

    Dietary Ground Flaxseed Increases Serum Alpha-Linolenic Acid Concentrations in Adult Cats

    No full text
    We evaluated effects of dietary ground flaxseed on fecal and serum alpha-linolenic acid (ALA) concentrations, nutrient digestibility, and stool quality in female and male adult cats (n = 20 (8 males, 12 females); 3.95 &plusmn; 1.49 years of age (mean &plusmn; SD); 3.88 &plusmn; 0.82 kg BW). We hypothesized that adding ground flaxseed would increase serum ALA compared with feeding no flax, without changing nutrient digestibility. Cats were fed as-is 2.6% added-flaxseed (flax, n = 10) or no-flax (control, n = 10) diets (2.66 vs. 0.78% ALA of total fatty acids; crude protein 35%, fat 20%, fiber 3% as-fed) twice daily to maintain body weight for 28 days. Fecal collections were conducted on days 23&ndash;27 for total-tract nutrient digestibility, stool quality (scale 1&ndash;5; 1 = watery diarrhea, 5 = hard, dry, crumbly) and long-chain fatty acid (LCFA) analyses. Blood was collected on days 0, 14, and 28 for serum LCFA and chemistry analysis. Digestibility and fecal data were analyzed by ANOVA (SAS v9.4, Cary, NC, USA) and a repeated measures ANOVA for serum ALA. Flax-fed cats, compared with control-fed, had greater (p &lt; 0.05) serum ALA after 14 days (4.00 vs. 0.71 &micro;g/mL) and 28 days (7.83 and 3.67 &micro;g/mL). No differences were observed in stool quality, and dry matter, protein, fat, and ALA digestibility. However, metabolizable energy was greater in the flax vs. control diet (4.18 vs. 3.91 kcal/g; p &lt; 0.05). Overall, these data demonstrate that ground flaxseed added to cat diets increases serum ALA within 14 days, with no detriments to nutrient digestibility. We conclude that flaxseed can be used as a bioavailable source of ALA in cat diets
    corecore