305 research outputs found

    Quadratic Volume-Preserving Maps: Invariant Circles and Bifurcations

    Full text link
    We study the dynamics of the five-parameter quadratic family of volume-preserving diffeomorphisms of R^3. This family is the unfolded normal form for a bifurcation of a fixed point with a triple-one multiplier and also is the general form of a quadratic three-dimensional map with a quadratic inverse. Much of the nontrivial dynamics of this map occurs when its two fixed points are saddle-foci with intersecting two-dimensional stable and unstable manifolds that bound a spherical ``vortex-bubble''. We show that this occurs near a saddle-center-Neimark-Sacker (SCNS) bifurcation that also creates, at least in its normal form, an elliptic invariant circle. We develop a simple algorithm to accurately compute these elliptic invariant circles and their longitudinal and transverse rotation numbers and use it to study their bifurcations, classifying them by the resonances between the rotation numbers. In particular, rational values of the longitudinal rotation number are shown to give rise to a string of pearls that creates multiple copies of the original spherical structure for an iterate of the map.Comment: 53 pages, 29 figure

    Thirty Years of Turnstiles and Transport

    Get PDF
    To characterize transport in a deterministic dynamical system is to compute exit time distributions from regions or transition time distributions between regions in phase space. This paper surveys the considerable progress on this problem over the past thirty years. Primary measures of transport for volume-preserving maps include the exiting and incoming fluxes to a region. For area-preserving maps, transport is impeded by curves formed from invariant manifolds that form partial barriers, e.g., stable and unstable manifolds bounding a resonance zone or cantori, the remnants of destroyed invariant tori. When the map is exact volume preserving, a Lagrangian differential form can be used to reduce the computation of fluxes to finding a difference between the action of certain key orbits, such as homoclinic orbits to a saddle or to a cantorus. Given a partition of phase space into regions bounded by partial barriers, a Markov tree model of transport explains key observations, such as the algebraic decay of exit and recurrence distributions.Comment: Updated and corrected versio

    Human dynamics revealed through Web analytics

    Full text link
    When the World Wide Web was first conceived as a way to facilitate the sharing of scientific information at the CERN (European Center for Nuclear Research) few could have imagined the role it would come to play in the following decades. Since then, the increasing ubiquity of Internet access and the frequency with which people interact with it raise the possibility of using the Web to better observe, understand, and monitor several aspects of human social behavior. Web sites with large numbers of frequently returning users are ideal for this task. If these sites belong to companies or universities, their usage patterns can furnish information about the working habits of entire populations. In this work, we analyze the properly anonymized logs detailing the access history to Emory University's Web site. Emory is a medium size university located in Atlanta, Georgia. We find interesting structure in the activity patterns of the domain and study in a systematic way the main forces behind the dynamics of the traffic. In particular, we show that both linear preferential linking and priority based queuing are essential ingredients to understand the way users navigate the Web.Comment: 7 pages, 8 figure

    Heteroclinic intersections between Invariant Circles of Volume-Preserving Maps

    Full text link
    We develop a Melnikov method for volume-preserving maps with codimension one invariant manifolds. The Melnikov function is shown to be related to the flux of the perturbation through the unperturbed invariant surface. As an example, we compute the Melnikov function for a perturbation of a three-dimensional map that has a heteroclinic connection between a pair of invariant circles. The intersection curves of the manifolds are shown to undergo bifurcations in homologyComment: LaTex with 10 eps figure

    Simultaneous Border-Collision and Period-Doubling Bifurcations

    Full text link
    We unfold the codimension-two simultaneous occurrence of a border-collision bifurcation and a period-doubling bifurcation for a general piecewise-smooth, continuous map. We find that, with sufficient non-degeneracy conditions, a locus of period-doubling bifurcations emanates non-tangentially from a locus of border-collision bifurcations. The corresponding period-doubled solution undergoes a border-collision bifurcation along a curve emanating from the codimension-two point and tangent to the period-doubling locus here. In the case that the map is one-dimensional local dynamics are completely classified; in particular, we give conditions that ensure chaos.Comment: 22 pages; 5 figure

    New Class of Eigenstates in Generic Hamiltonian Systems

    Full text link
    In mixed systems, besides regular and chaotic states, there are states supported by the chaotic region mainly living in the vicinity of the hierarchy of regular islands. We show that the fraction of these hierarchical states scales as α\hbar^{-\alpha} and relate the exponent α=11/γ\alpha=1-1/\gamma to the decay of the classical staying probability P(t)tγP(t)\sim t^{-\gamma}. This is numerically confirmed for the kicked rotor by studying the influence of hierarchical states on eigenfunction and level statistics.Comment: 4 pages, 3 figures, Phys. Rev. Lett., to appea

    Quantum Breaking Time Scaling in the Superdiffusive Dynamics

    Full text link
    We show that the breaking time of quantum-classical correspondence depends on the type of kinetics and the dominant origin of stickiness. For sticky dynamics of quantum kicked rotor, when the hierarchical set of islands corresponds to the accelerator mode, we demonstrate by simulation that the breaking time scales as τ(1/)1/μ\tau_{\hbar} \sim (1/\hbar)^{1/\mu} with the transport exponent μ>1\mu > 1 that corresponds to superdiffusive dynamics. We discuss also other possibilities for the breaking time scaling and transition to the logarithmic one τln(1/)\tau_{\hbar} \sim \ln(1/\hbar) with respect to \hbar

    Generic Twistless Bifurcations

    Get PDF
    We show that in the neighborhood of the tripling bifurcation of a periodic orbit of a Hamiltonian flow or of a fixed point of an area preserving map, there is generically a bifurcation that creates a ``twistless'' torus. At this bifurcation, the twist, which is the derivative of the rotation number with respect to the action, vanishes. The twistless torus moves outward after it is created, and eventually collides with the saddle-center bifurcation that creates the period three orbits. The existence of the twistless bifurcation is responsible for the breakdown of the nondegeneracy condition required in the proof of the KAM theorem for flows or the Moser twist theorem for maps. When the twistless torus has a rational rotation number, there are typically reconnection bifurcations of periodic orbits with that rotation number.Comment: 29 pages, 9 figure

    Fractal Conductance Fluctuations in a Soft Wall Stadium and a Sinai Billiard

    Full text link
    Conductance fluctuations have been studied in a soft wall stadium and a Sinai billiard defined by electrostatic gates on a high mobility semiconductor heterojunction. These reproducible magnetoconductance fluctuations are found to be fractal confirming recent theoretical predictions of quantum signatures in classically mixed (regular and chaotic) systems. The fractal character of the fluctuations provides direct evidence for a hierarchical phase space structure at the boundary between regular and chaotic motion.Comment: 4 pages, 4 figures, data on Sinai geometry added to Fig.1, minor change

    Resonance Zones and Lobe Volumes for Volume-Preserving Maps

    Full text link
    We study exact, volume-preserving diffeomorphisms that have heteroclinic connections between a pair of normally hyperbolic invariant manifolds. We develop a general theory of lobes, showing that the lobe volume is given by an integral of a generating form over the primary intersection, a subset of the heteroclinic orbits. Our definition reproduces the classical action formula in the planar, twist map case. For perturbations from a heteroclinic connection, the lobe volume is shown to reduce, to lowest order, to a suitable integral of a Melnikov function.Comment: ams laTeX, 8 figure
    corecore