381 research outputs found

    Entropy of complex relevant components of Boolean networks

    Full text link
    Boolean network models of strongly connected modules are capable of capturing the high regulatory complexity of many biological gene regulatory circuits. We study numerically the previously introduced basin entropy, a parameter for the dynamical uncertainty or information storage capacity of a network as well as the average transient time in random relevant components as a function of their connectivity. We also demonstrate that basin entropy can be estimated from time-series data and is therefore also applicable to non-deterministic networks models.Comment: 8 pages, 6 figure

    Divergence Measure Between Chaotic Attractors

    Full text link
    We propose a measure of divergence of probability distributions for quantifying the dissimilarity of two chaotic attractors. This measure is defined in terms of a generalized entropy. We illustrate our procedure by considering the effect of additive noise in the well known H\'enon attractor. Comparison of two H\'enon attractors for slighly different parameter values, has shown that the divergence has complex scaling structure. Finally, we show how our approach allows to detect non-stationary events in a time series.Comment: 9 pages, 6 figure

    Stickiness in Hamiltonian systems: from sharply divided to hierarchical phase space

    Get PDF
    We investigate the dynamics of chaotic trajectories in simple yet physically important Hamiltonian systems with non-hierarchical borders between regular and chaotic regions with positive measures. We show that the stickiness to the border of the regular regions in systems with such a sharply divided phase space occurs through one-parameter families of marginally unstable periodic orbits and is characterized by an exponent \gamma= 2 for the asymptotic power-law decay of the distribution of recurrence times. Generic perturbations lead to systems with hierarchical phase space, where the stickiness is apparently enhanced due to the presence of infinitely many regular islands and Cantori. In this case, we show that the distribution of recurrence times can be composed of a sum of exponentials or a sum of power-laws, depending on the relative contribution of the primary and secondary structures of the hierarchy. Numerical verification of our main results are provided for area-preserving maps, mushroom billiards, and the newly defined magnetic mushroom billiards.Comment: To appear in Phys. Rev. E. A PDF version with higher resolution figures is available at http://www.pks.mpg.de/~edugal

    Return interval distribution of extreme events and long term memory

    Full text link
    The distribution of recurrence times or return intervals between extreme events is important to characterize and understand the behavior of physical systems and phenomena in many disciplines. It is well known that many physical processes in nature and society display long range correlations. Hence, in the last few years, considerable research effort has been directed towards studying the distribution of return intervals for long range correlated time series. Based on numerical simulations, it was shown that the return interval distributions are of stretched exponential type. In this paper, we obtain an analytical expression for the distribution of return intervals in long range correlated time series which holds good when the average return intervals are large. We show that the distribution is actually a product of power law and a stretched exponential form. We also discuss the regimes of validity and perform detailed studies on how the return interval distribution depends on the threshold used to define extreme events.Comment: 8 pages, 6 figure

    Macroscopic detection of the strong stochasticity threshold in Fermi-Pasta-Ulam chains of oscillators

    Full text link
    The largest Lyapunov exponent of a system composed by a heavy impurity embedded in a chain of anharmonic nearest-neighbor Fermi-Pasta-Ulam oscillators is numerically computed for various values of the impurity mass MM. A crossover between weak and strong chaos is obtained at the same value ϵT\epsilon_{_T} of the energy density ϵ\epsilon (energy per degree of freedom) for all the considered values of the impurity mass MM. The threshold \epsi lon_{_T} coincides with the value of the energy density ϵ\epsilon at which a change of scaling of the relaxation time of the momentum autocorrelation function of the impurity ocurrs and that was obtained in a previous work ~[M. Romero-Bastida and E. Braun, Phys. Rev. E {\bf65}, 036228 (2002)]. The complete Lyapunov spectrum does not depend significantly on the impurity mass MM. These results suggest that the impurity does not contribute significantly to the dynamical instability (chaos) of the chain and can be considered as a probe for the dynamics of the system to which the impurity is coupled. Finally, it is shown that the Kolmogorov-Sinai entropy of the chain has a crossover from weak to strong chaos at the same value of the energy density that the crossover value ϵT\epsilon_{_T} of largest Lyapunov exponent. Implications of this result are discussed.Comment: 6 pages, 5 figures, revtex4 styl

    Asymptotic solutions of decoupled continuous-time random walks with superheavy-tailed waiting time and heavy-tailed jump length distributions

    Full text link
    We study the long-time behavior of decoupled continuous-time random walks characterized by superheavy-tailed distributions of waiting times and symmetric heavy-tailed distributions of jump lengths. Our main quantity of interest is the limiting probability density of the position of the walker multiplied by a scaling function of time. We show that the probability density of the scaled walker position converges in the long-time limit to a non-degenerate one only if the scaling function behaves in a certain way. This function as well as the limiting probability density are determined in explicit form. Also, we express the limiting probability density which has heavy tails in terms of the Fox HH-function and find its behavior for small and large distances.Comment: 16 pages, 1 figur

    q-Breathers and thermalization in acoustic chains with arbitrary nonlinearity index

    Full text link
    Nonlinearity shapes lattice dynamics affecting vibrational spectrum, transport and thermalization phenomena. Beside breathers and solitons one finds the third fundamental class of nonlinear modes -- qq-breathers -- periodic orbits in nonlinear lattices, exponentially localized in the reciprocal mode space. To date, the studies of qq-breathers have been confined to the cubic and quartic nonlinearity in the interaction potential. In this paper we study the case of arbitrary nonlinearity index γ\gamma in an acoustic chain. We uncover qualitative difference in the scaling of delocalization and stability thresholds of qq-breathers with the system size: there exists a critical index γ=6\gamma^*=6, below which both thresholds (in nonlinearity strength) tend to zero, and diverge when above. We also demonstrate that this critical index value is decisive for the presence or absense of thermalization. For a generic interaction potential the mode space localized dynamics is determined only by the three lowest order nonlinear terms in the power series expansion.Comment: 5 pages, 4 figure

    Nonlinear time-series analysis of Hyperion's lightcurves

    Get PDF
    Hyperion is a satellite of Saturn that was predicted to remain in a chaotic rotational state. This was confirmed to some extent by Voyager 2 and Cassini series of images and some ground-based photometric observations. The aim of this aticle is to explore conditions for potential observations to meet in order to estimate a maximal Lyapunov Exponent (mLE), which being positive is an indicator of chaos and allows to characterise it quantitatively. Lightcurves existing in literature as well as numerical simulations are examined using standard tools of theory of chaos. It is found that existing datasets are too short and undersampled to detect a positive mLE, although its presence is not rejected. Analysis of simulated lightcurves leads to an assertion that observations from one site should be performed over a year-long period to detect a positive mLE, if present, in a reliable way. Another approach would be to use 2---3 telescopes spread over the world to have observations distributed more uniformly. This may be achieved without disrupting other observational projects being conducted. The necessity of time-series to be stationary is highly stressed.Comment: 34 pages, 12 figures, 4 tables; v2 after referee report; matches the version accepted in Astrophysics and Space Scienc

    Geometric and dynamic perspectives on phase-coherent and noncoherent chaos

    Get PDF
    Statistically distinguishing between phase-coherent and noncoherent chaotic dynamics from time series is a contemporary problem in nonlinear sciences. In this work, we propose different measures based on recurrence properties of recorded trajectories, which characterize the underlying systems from both geometric and dynamic viewpoints. The potentials of the individual measures for discriminating phase-coherent and noncoherent chaotic oscillations are discussed. A detailed numerical analysis is performed for the chaotic R\"ossler system, which displays both types of chaos as one control parameter is varied, and the Mackey-Glass system as an example of a time-delay system with noncoherent chaos. Our results demonstrate that especially geometric measures from recurrence network analysis are well suited for tracing transitions between spiral- and screw-type chaos, a common route from phase-coherent to noncoherent chaos also found in other nonlinear oscillators. A detailed explanation of the observed behavior in terms of attractor geometry is given.Comment: 12 pages, 13 figure

    Chaos or Noise - Difficulties of a Distinction

    Full text link
    In experiments, the dynamical behavior of systems is reflected in time series. Due to the finiteness of the observational data set it is not possible to reconstruct the invariant measure up to arbitrary fine resolution and arbitrary high embedding dimension. These restrictions limit our ability to distinguish between signals generated by different systems, such as regular, chaotic or stochastic ones, when analyzed from a time series point of view. We propose to classify the signal behavior, without referring to any specific model, as stochastic or deterministic on a certain scale of the resolution ϵ\epsilon, according to the dependence of the (ϵ,τ)(\epsilon,\tau)-entropy, h(ϵ,τ)h(\epsilon, \tau), and of the finite size Lyapunov exponent, λ(ϵ)\lambda(\epsilon), on ϵ\epsilon.Comment: 24 pages RevTeX, 9 eps figures included, two references added, minor corrections, one section has been split in two (submitted to PRE
    corecore