47,420 research outputs found

    The Global Star Formation Rate from the 1.4 GHz Luminosity Function

    Get PDF
    The decimetric luminosity of many galaxies appears to be dominated by synchrotron emission excited by supernova explosions. Simple models suggest that the luminosity is directly proportional to the rate of supernova explosions of massive stars averaged over the past 30 Myr. The proportionality may be used together with models of the evolving 1.4 GHz luminosity function to estimate the global star formation rate density in the era z < 1. The local value is estimated to be 0.026 solar masses per year per cubic megaparsec, some 50% larger than the value inferred from the Halpha luminosity density. The value at z ~ 1 is found to be 0.30 solar masses per year per cubic megaparsec. The 10-fold increase in star formation rate density is consistent with the increase inferred from mm-wave, far-infrared, ultra-violet and Halpha observations.Comment: 10 pages, 2 figures, Astrophysical Journal Letters (in press); new PS version has improved figure placemen

    Thermal Emission from HII Galaxies: Discovering the Youngest Systems

    Get PDF
    We studied the radio properties of very young massive regions of star formation in HII galaxies, with the aim of detecting episodes of recent star formation in an early phase of evolution where the first supernovae start to appear. Our sample consists of 31 HII galaxies, characterized by strong Hydrogen emission lines, for which low resolution VLA 3.5cm and 6cm observations were obtained. The radio spectral energy distribution has a range of behaviours; 1) there are galaxies where the SED is characterized by a synchrotron-type slope, 2) galaxies with a thermal slope, and, 3) galaxies with possible free-free absorption at long wavelengths. The latter SEDs were found in a few galaxies and represent a signature of heavily embedded massive star clusters closely related to the early stages of massive star formation. Based on the comparison of the star formation rates determined from the recombination lines and those determined from the radio emission we find that SFR(Ha) is on average five times higher than SFR(1.4GHz). We confirm this tendency by comparing the ratio between the observed flux at 20 cm and the expected one, calculated based on the Ha star formation rates, both for the galaxies in our sample and for normal ones. This analysis shows that this ratio is a factor of 2 smaller in our galaxies than in normal ones, indicating that they fall below the FIR/radio correlation. These results suggest that the emission of these galaxies is dominated by a recent and massive star formation event in which the first supernovae (SN) just started to explode. We conclude that the systematic lack of synchrotron emission in those systems with the largest equivalent width of Hb can only be explained if those are young starbursts of less than 3.5Myr of age.Comment: Accepted for publication in Ap

    Mathematical analysis of a model for the growth of the bovine corpus luteum

    Get PDF
    The corpus luteum (CL) is an ovarian tissue that grows in the wound space created by follicular rupture. It produces the progesterone needed in the uterus to maintain pregnancy. Rapid growth of the CL and progesterone transport to the uterus require angiogenesis, the creation of new blood vessels from pre-existing ones, a process which is regulated by proteins that include fibroblast growth factor 2 (FGF2).\ud \ud In this paper we develop a system of time-dependent ordinary differential equations to model CL growth. The dependent variables represent FGF2, endothelial cells (ECs), luteal cells, and stromal cells (like pericytes), by assuming that the CL volume is a continuum of the three cell types. We assume that if the CL volume exceeds that of the ovulated follicle, then growth is inhibited. This threshold volume partitions the system dynamics into two regimes, so that the model may be classified as a Filippov (piecewise smooth) system.\ud \ud We show that normal CL growth requires an appropriate balance between the growth rates of luteal and stromal cells. We investigate how angiogenesis influences CL growth by considering how the system dynamics depend on the dimensionless EC proliferation rate, p5. We find that weak (low p5) or strong (high p5) angiogenesis leads to ‘pathological’ CL growth, since the loss of CL constituents compromises progesterone production or delivery. However, for intermediate values of p5, normal CL growth is predicted. The implications of these results for cow fertility are also discussed. For example, inadequate angiogenesis has been linked to infertility in dairy cows

    Electromagnetic vortex lines riding atop null solutions of the Maxwell equations

    Full text link
    New method of introducing vortex lines of the electromagnetic field is outlined. The vortex lines arise when a complex Riemann-Silberstein vector (E+iB)/2({\bm E} + i{\bm B})/\sqrt{2} is multiplied by a complex scalar function ϕ\phi. Such a multiplication may lead to new solutions of the Maxwell equations only when the electromagnetic field is null, i.e. when both relativistic invariants vanish. In general, zeroes of the ϕ\phi function give rise to electromagnetic vortices. The description of these vortices benefits from the ideas of Penrose, Robinson and Trautman developed in general relativity.Comment: NATO Workshop on Singular Optics 2003 To appear in Journal of Optics

    The star-formation history of the universe - an infrared perspective

    Get PDF
    A simple and versatile parameterized approach to the star formation history allows a quantitative investigation of the constraints from far infrared and submillimetre counts and background intensity measurements. The models include four spectral components: infrared cirrus (emission from interstellar dust), an M82-like starburst, an Arp220-like starburst and an AGN dust torus. The 60 ÎŒ\mum luminosity function is determined for each chosen rate of evolution using the PSCz redshift data for 15000 galaxies. The proportions of each spectral type as a function of 60 ÎŒ\mum luminosity are chosen for consistency with IRAS and SCUBA colour-luminosity relations, and with the fraction of AGN as a function of luminosity found in 12 ÎŒ\mum samples. The luminosity function for each component at any wavelength can then be calculated from the assumed spectral energy distributions. With assumptions about the optical seds corresponding to each component and, for the AGN component, the optical and near infrared counts can be accurately modelled. A good fit to the observed counts at 0.44, 2.2, 15, 60, 90, 175 and 850 ÎŒ\mum can be found with pure luminosity evolution in all 3 cosmological models investigated: Ωo\Omega_o = 1, Ωo\Omega_o = 0.3 (Λ\Lambda = 0), and Ωo\Omega_o = 0.3, Λ\Lambda = 0.7. All 3 models also give an acceptable fit to the integrated background spectrum. Selected predictions of the models, for example redshift distributions for each component at selected wavelengths and fluxes, are shown. The total mass-density of stars generated is consistent with that observed, in all 3 cosmological models.Comment: 20 pages, 25 figures. Accepted for publication in ApJ. Full details of models can be found at http://astro.ic.ac.uk/~mrr/countmodel

    Emission lines and optical continuum in low-luminosity radio galaxies

    Full text link
    We present spectroscopic observations of a complete sub-sample of 13 low-luminosity radio galaxies selected from the 2Jy sample. The underlying continuum in these sources is carefully modelled in order to make a much-needed comparison between the emission line and continuum properties of FRIs with those of other classes of radio sources. We find that 5 galaxies in the sample show a measurable UV excess: 2 of the these sources are BL Lacs and in the remaining 3 galaxies we argue that the most likely contributor to the UV excess is a young stellar component. Excluding the BL Lacs, we therefore find that \~30% of the sample show evidence for young stars, which is similar to the results obtained for higher luminosity samples. We compare our results with far-infrared measurements in order to investigate the far-infrared-starburst link. The nature of the optical-radio correlations is investigated in light of this new available data and, in contrast to previous studies, we find that the FRI sources follow the correlations with a similar slope to that found for the FRIIs. Finally, we compare the luminosity of the emission lines in the FRI and BL Lac sources and find a significant difference in the [OIII] line luminosities of the two groups. Our results are discussed in the context of the unified schemes.Comment: 18 pages, 31 figures, MNRAS in press, (all enquiries to Clive Tadhunter ([email protected])

    Bottlenecks to vibrational energy flow in OCS: Structures and mechanisms

    Full text link
    Finding the causes for the nonstatistical vibrational energy relaxation in the planar carbonyl sulfide (OCS) molecule is a longstanding problem in chemical physics: Not only is the relaxation incomplete long past the predicted statistical relaxation time, but it also consists of a sequence of abrupt transitions between long-lived regions of localized energy modes. We report on the phase space bottlenecks responsible for this slow and uneven vibrational energy flow in this Hamiltonian system with three degrees of freedom. They belong to a particular class of two-dimensional invariant tori which are organized around elliptic periodic orbits. We relate the trapping and transition mechanisms with the linear stability of these structures.Comment: 13 pages, 13 figure

    The late infrared development of Nova Serpentis 1970

    Get PDF
    Broad-band infrared observations of FH Ser (Nova Ser 1970) covering the period 40 to 529 days after discovery are presented. Strong quantitative evidence for grain growth in the period 60–111 days is derived from the agreement between predictions of dust shell models and the observations. Between days 111 and 129 the grains undergo a significant reduction in size. The infrared luminosity is found to fall as t⁻³ for t ≳ 100. However, up until day 200 this is due to a continuing grain size reduction, while the bolometric luminosity remains approximately constant. After day 200 the bolometric luminosity falls off as ∌t⁻Âč. At late times, an excess flux in the 1-3 ”m region appears above the dominant cool dust emission component. This excess flux is probably due to increasing line emission in the J, H and K bandpasses as the ejected shell expands

    The late infrared development of Nova Serpentis 1970

    Get PDF
    Broad-band infrared observations of FH Ser (Nova Ser 1970) covering the period 40 to 529 days after discovery are presented. Strong quantitative evidence for grain growth in the period 60–111 days is derived from the agreement between predictions of dust shell models and the observations. Between days 111 and 129 the grains undergo a significant reduction in size. The infrared luminosity is found to fall as t⁻³ for t ≳ 100. However, up until day 200 this is due to a continuing grain size reduction, while the bolometric luminosity remains approximately constant. After day 200 the bolometric luminosity falls off as ∌t⁻Âč. At late times, an excess flux in the 1-3 ”m region appears above the dominant cool dust emission component. This excess flux is probably due to increasing line emission in the J, H and K bandpasses as the ejected shell expands
    • 

    corecore