15,944 research outputs found

    Optimal universal programmable detectors for unambiguous discrimination

    Get PDF
    We discuss the problem of designing unambiguous programmable discriminators for any n unknown quantum states in an m-dimensional Hilbert space. The discriminator is a fixed measurement that has two kinds of input registers: the program registers and the data register. The quantum state in the data register is what users want to identify, which is confirmed to be among the n states in program registers. The task of the discriminator is to tell the users which state stored in the program registers is equivalent to that in the data register. First, we give a necessary and sufficient condition for judging an unambiguous programmable discriminator. Then, if m=nm=n, we present an optimal unambiguous programmable discriminator for them, in the sense of maximizing the worst-case probability of success. Finally, we propose a universal unambiguous programmable discriminator for arbitrary n quantum states.Comment: 7 page

    Aeroelastic analysis for propellers - mathematical formulations and program user's manual

    Get PDF
    Mathematical development is presented for a specialized propeller dedicated version of the G400 rotor aeroelastic analysis. The G400PROP analysis simulates aeroelastic characteristics particular to propellers such as structural sweep, aerodynamic sweep and high subsonic unsteady airloads (both stalled and unstalled). Formulations are presented for these expanded propeller related methodologies. Results of limited application of the analysis to realistic blade configurations and operating conditions which include stable and unstable stall flutter test conditions are given. Sections included for enhanced program user efficiency and expanded utilization include descriptions of: (1) the structuring of the G400PROP FORTRAN coding; (2) the required input data; and (3) the output results. General information to facilitate operation and improve efficiency is also provided

    Steady incompressible variable thickness shear layer aerodynamics

    Get PDF
    A shear flow aerodynamic theory for steady incompressible flows is presented for both the lifting and non lifting problems. The slow variation of the boundary layer thickness is considered. The slowly varying behavior is treated by using multitime scales. The analysis begins with the elementary wavy wall problem and, through Fourier superpositions over the wave number space, the shear flow equivalents to the aerodynamic transfer functions of classical potential flow are obtained. The aerodynamic transfer functions provide integral equations which relate the wall pressure and the upwash. Computational results are presented for the pressure distribution, the lift coefficient, and the center of pressure travel along a two dimensional flat plate in a shear flow. The aerodynamic load is decreased by the shear layer, compared to the potential flow. The variable thickness shear layer decreases it less than the uniform thickness shear layer based upon equal maximum shear layer thicknesses

    Entanglement transformation between sets of bipartite pure quantum states using local operations

    Get PDF
    Alice and Bob are given an unknown initial state chosen from a set of pure quantum states. Their task is to transform the initial state to a corresponding final pure state using local operations only. We prove necessary and sufficient conditions on the existence of such a transformation. We also provide efficient algorithms that can quickly rule out the possibility of transforming a set of initial states to a set of final states.Comment: 19 pages, 1 figure, minor revision, to appear in J.Math.Phy

    Measurement of the Cosmic Optical Background using the Long Range Reconnaissance Imager on New Horizons

    Full text link
    The cosmic optical background is an important observable that constrains energy production in stars and more exotic physical processes in the universe, and provides a crucial cosmological benchmark against which to judge theories of structure formation. Measurement of the absolute brightness of this background is complicated by local foregrounds like the Earth's atmosphere and sunlight reflected from local interplanetary dust, and large discrepancies in the inferred brightness of the optical background have resulted. Observations from probes far from the Earth are not affected by these bright foregrounds. Here we analyze data from the Long Range Reconnaissance Imager (LORRI) instrument on NASA's New Horizons mission acquired during cruise phase outside the orbit of Jupiter, and find a statistical upper limit on the optical background's brightness similar to the integrated light from galaxies. We conclude that a carefully performed survey with LORRI could yield uncertainties comparable to those from galaxy counting measurements.Comment: 35 pages, 11 figures, published in Nature Communication

    Quantum computation in a hybrid array of molecules and Rydberg atoms

    Get PDF
    We show that an array of polar molecules interacting with Rydberg atoms is a promising hybrid system for scalable quantum computation. Quantum information is stored in long-lived hyperfine or rotational states of molecules which interact indirectly through resonant dipole-dipole interactions with Rydberg atoms. A two-qubit gate based on this interaction has a duration of 1 μ\mus and an achievable fidelity of 99.9%. The gate is insensitive to the motional states of the particles -- the molecules can be in thermal states, the atoms do not need to be trapped during Rydberg excitation, the gate does not heat the molecules, and heating of the atoms is irrelevant. Within a large, static array, the gate can be applied to arbitrary pairs of molecules separated by tens of micrometres, making the scheme highly scalable. The molecule-atom interaction can also be used for rapid qubit initialization and efficient, non-destructive qubit readout, without driving any molecular transitions. Single qubit gates are driven using microwave pulses alone, exploiting the strong electric dipole transitions between rotational states. Thus, all operations required for large scale quantum computation can be done without moving the molecules or exciting them out of their ground electronic states.Comment: 16 pages, 7 figure

    GraphSE2^2: An Encrypted Graph Database for Privacy-Preserving Social Search

    Full text link
    In this paper, we propose GraphSE2^2, an encrypted graph database for online social network services to address massive data breaches. GraphSE2^2 preserves the functionality of social search, a key enabler for quality social network services, where social search queries are conducted on a large-scale social graph and meanwhile perform set and computational operations on user-generated contents. To enable efficient privacy-preserving social search, GraphSE2^2 provides an encrypted structural data model to facilitate parallel and encrypted graph data access. It is also designed to decompose complex social search queries into atomic operations and realise them via interchangeable protocols in a fast and scalable manner. We build GraphSE2^2 with various queries supported in the Facebook graph search engine and implement a full-fledged prototype. Extensive evaluations on Azure Cloud demonstrate that GraphSE2^2 is practical for querying a social graph with a million of users.Comment: This is the full version of our AsiaCCS paper "GraphSE2^2: An Encrypted Graph Database for Privacy-Preserving Social Search". It includes the security proof of the proposed scheme. If you want to cite our work, please cite the conference version of i

    Discrimination between pure states and mixed states

    Get PDF
    In this paper, we discuss the problem of determining whether a quantum system is in a pure state, or in a mixed state. We apply two strategies to settle this problem: the unambiguous discrimination and the maximum confidence discrimination. We also proved that the optimal versions of both strategies are equivalent. The efficiency of the discrimination is also analyzed. This scheme also provides a method to estimate purity of quantum states, and Schmidt numbers of composed systems
    corecore