20,203 research outputs found

    Finite Controllability of Infinite-Dimensional Quantum Systems

    Full text link
    Quantum phenomena of interest in connection with applications to computation and communication almost always involve generating specific transfers between eigenstates, and their linear superpositions. For some quantum systems, such as spin systems, the quantum evolution equation (the Schr\"{o}dinger equation) is finite-dimensional and old results on controllability of systems defined on on Lie groups and quotient spaces provide most of what is needed insofar as controllability of non-dissipative systems is concerned. However, in an infinite-dimensional setting, controlling the evolution of quantum systems often presents difficulties, both conceptual and technical. In this paper we present a systematic approach to a class of such problems for which it is possible to avoid some of the technical issues. In particular, we analyze controllability for infinite-dimensional bilinear systems under assumptions that make controllability possible using trajectories lying in a nested family of pre-defined subspaces. This result, which we call the Finite Controllability Theorem, provides a set of sufficient conditions for controllability in an infinite-dimensional setting. We consider specific physical systems that are of interest for quantum computing, and provide insights into the types of quantum operations (gates) that may be developed.Comment: This is a much improved version of the paper first submitted to the arxiv in 2006 that has been under review since 2005. A shortened version of this paper has been conditionally accepted for publication in IEEE Transactions in Automatic Control (2009

    Detection of Spiral photons in Quantum Optics

    Full text link
    We show that a new type of photon detector, sensitive to the gradients of electromagnetic fields, should be a useful tool to characterize the quantum properties of spatially-dependent optical fields. As a simple detector of such a kind, we propose using magnetic dipole or electric quadrupole transitions in atoms or molecules and apply it to the detection of spiral photons in Laguerre-Gauss (LG) beams. We show that LG beams are not true hollow beams, due to the presence of magnetic fields and gradients of electric fields on beam axis. This approach paves the way to an analysis at the quantum level of the spatial structure and angular momentum properties of singular light beams.Comment: 5 pages, 4 figure

    Phase diagram and critical properties in the Polyakov--Nambu--Jona-Lasinio model

    Full text link
    We investigate the phase diagram of the so-called Polyakov--Nambu--Jona-Lasinio model at finite temperature and nonzero chemical potential with three quark flavours. Chiral and deconfinement phase transitions are discussed, and the relevant order-like parameters are analyzed. The results are compared with simple thermodynamic expectations and lattice data. A special attention is payed to the critical end point: as the strength of the flavour-mixing interaction becomes weaker, the critical end point moves to low temperatures and can even disappear.Comment: Talk given at the 9th International Conference on Quark Confinement and the Hadron Spectrum - QCHS IX, Madrid, Spain, 30 August - September 201

    K -> pi pi and a light scalar meson

    Full text link
    We explore the Delta-I= 1/2 rule and epsilon'/epsilon in K -> pi pi transitions using a Dyson-Schwinger equation model. Exploiting the feature that QCD penguin operators direct K^0_S transitions through 0^{++} intermediate states, we find an explanation of the enhancement of I=0 K -> pi pi transitions in the contribution of a light sigma-meson. This mechanism also affects epsilon'/epsilon.Comment: 7 pages, REVTE

    A new Bloch period for interacting cold atoms in 1D optical lattices

    Full text link
    The paper studies Bloch oscillations of ultracold atoms in optical lattice in the presence of atom-atom interaction. A new, interaction-induced Bloch period is identified. The analytical results are corroborated by realistic numerical calculations.Comment: revtex4, 4 pages, 4 figures, gzipped tar fil

    Numerical cancellation of photon quadratic divergence in the study of the Schwinger-Dyson equations in Strong Coupling QED

    Get PDF
    The behaviour of the photon renormalization function in strong coupling QED has been recently studied by Kondo, Mino and Nakatani. We find that the sharp decrease in its behaviour at intermediate photon momenta is an artefact of the method used to remove the quadratic divergence in the vacuum polarization. We discuss how this can be avoided in numerical studies of the Schwinger-Dyson equations.Comment: 9 pages, Latex, 5 figures. Complete postscript file available from: ftp://cpt1.dur.ac.uk/pub/preprints/dtp94/dtp94100/dtp94100.p
    corecore