1,236 research outputs found
On the Chinese Exchange Rate Regime: an Attempt to Flexibility during 2015
This study will demonstrate, through an econometric and asset allocation approach, if and
how the Chinese exchange rate regime was changing during 2015. Particularly, China to improve its
exchange rate formation system implemented, during July and August 2015, three depreciation as a
step toward a market-oriented exchange rate. This situation, along with the new right of the RMB to
be an international currency in SDR should generate a loss of weight about the USD in the Chinese
basket peg. For this reason, moving from Frankel-Wei’s basic econometric model - but with some
appropriate changes - our objective is to verify if the Chinese monetary policy about the exchange
rate has affected the inner balance of the Chinese basket-peg leading it towards a flexible exchange
rate regime
Sorrentina peninsula: Geographical distribution of the indoor radon concentrations in dwellings—gini index application
The radon isotope (222Rn, half-life 3.8 days) is a radioactive byproduct of the238U decay chain. Because radon is the second biggest cause of lung cancer after smoking, dense maps of indoor radon concentration are required to implement effective locally based risk reduction strategies. In this regard, we present an innovative method for the construction of interpolated maps (kriging) based on the Gini index computation to characterize the distribution of Rn concentration. The Gini coefficient variogram has been shown to be an effective predictor of radon concentration inhomogeneity. It allows for a better constraint of the critical distance below which the radon geological source can be considered uniform, at least for the investigated length scales of variability; it also better distinguishes fluctuations due to environmental predisposing factors from those due to random spatially uncorrelated noise. This method has been shown to be effective in finding larger-scale geographical connections that can subsequently be connected to geological characteristics. It was tested using real dataset derived from indoor radon measurements conducted in the Sorrentina Peninsula in Campania, Italy. The measurement was carried out in different residences using passive detectors (CR-39) for two consecutive semesters, beginning in September– November 2019 and ending in September–November 2020, to estimate the yearly mean radon concentration. The measurements and analysis were conducted in accordance with the quality control plan. Radon concentrations ranged from 25 to 722 Bq/m3 before being normalized to ground level, and from 23 to 933 Bq/m3 after being normalized, with a geometric mean of 120 Bq/m3 and a geometric standard deviation of 1.35 before data normalization, and 139 Bq/m3 and a geometric standard deviation of 1.36 after data normalization. Approximately 13% of the tests conducted exceeded the 300 Bq/m3 reference level set by Italian Legislative Decree 101/2020. The data show that the municipalities under investigation had no influence on indoor radon levels. The geology of the monitored location is interesting, and because soil is the primary source of Rn, risk assessment and mitigation for radon exposure cannot be undertaken without first analyzing the local geology. This research examines the spatial link among radon readings using the mapping based on the Gini method (kriging)
Room temperature electrodeposition of photoactive Cd(OH)2 nanowires
Cd(OH)2 nanowires (NWs) were successfully prepared by room temperature electrogeneration of base using Cd(NO3)2 aqueous electrolyte and Anodic Alumina Membrane (AAM) as template. Cd(OH)2 films have been also deposited on tin-doped indium oxide (ITO) for comparison. SEM analysis shows high quality deposits made of closely packed nanowires (NWs) into AAM and uniform flake-like surface on ITO. XRD analysis reveals that Cd(OH)2 films on ITO are polycrystalline, while the nanowires grow along the preferential directions [100] and [110]. Photoelectrochemical measurements show that Cd(OH)2 NWs are photoactive materials with indirect and direct band gap of 2.15 and 2.75Â eV, respectively. Keywords: Electrogeneration of base, Cd(OH)2, Nanowires, Band ga
Band Gap Modeling of Different Ternary and Quaternary Alumina Garnet Phases Y3(AlXGa1-X)5O12 (YAGG) and Lu3(AlXGa1-X)5O12 (LuAGG). A Semiempirical Approach
A further generalization to quaternary oxide systems of the modeling equation of optical band gap values, based on the semiempirical correlation between the differences in the electronegativity of oxygen and the average cationic electronegativity, proposed some years ago, has been carried out by expanding the approach recently employed for ternary mixed oxides. The choice of oxide polymorphs and their influence on the fitting procedure of an experimental data set is evidenced by a detailed discussion of the fitting process of the literature's experimental band gap data pertaining two quaternary oxide systems of the garnet family, namely, Y3(AlxGa1-x)5O12 (YAGG) and Lu3(AlxGa1-x)5O12 (LuAGG), playing an important role in several engineering applications. The two investigated systems, moreover, span a quite large range of band gap energy values (from similar to 5.5 to similar to 7.5 eV), as a function of the Al/Ga ratio, allowing a rigorous test of the proposed modeling equation. Based on the wide existing literature on the presence of excitonic effects in the investigated systems some empirical correlations between an optical gap and a band gap in the presence of excitonic effects are suggested, too, which could provide some rationale to overcome the discrepancies frequently encountered in comparing band gap values reported in the literature for the same materials. The results of this work confirm the ability of this semiempirical approach in providing good agreement between experimental and theoretical band gap values also for very complex systems, where more sophisticated density functional theory-based methods face some difficulties in predicting the correct values
Modeling of Optical Band-Gap Values of Mixed Oxides Having Spinel Structure AB2O4 (A = Mg, Zn and B = Al, Ga) by a Semiempirical Approach
Spinel oxides with the general formula AB(2)O(4) comprise a large family of compounds covering a very wide range of band-gap values (1 eV < E g < 8 eV) as a function of the nature of the metallic cations A and B. Owing to this, the physical properties of these materials have been largely exploited both from a fundamental point of view, for their variable electronic properties, and for their possible use in numerous engineering applications. Herein, the modeling of ZnAl2O4, ZnGa2O4, MgAl2O4, and MgGa2O4 cubic spinel oxides has been carried out by using the semiempirical approach based on the difference of electronegativity between oxygen and the average electronegativity of cations present in the oxides. The results of recent theoretical extensions of our semiempirical approach to ternary and quaternary oxides have been tested for spinel oxides with metallic ions occupying both octahedrally and tetrahedrally coordinated sites in different ratios. A detailed analysis of the experimental band-gap values and comparison with the theoretically estimated values has been carried out for ternary ZnAl2O4, ZnGa2O4, MgAl2O4, and MgGa2O4 spinels as well as for double spinels Mg-(Al-2x Ga2-x )-O-4 and Zn-(Al-2x Ga2-x )-O-4, and quaternary mixed oxides (ZnxMg(1-x))-Al2O4 and (ZnxMg(1-x))-Ga2O4. The wide range of band-gap values reported in the literature for simple or double spinels has been related to the different preparation methods affecting the grain dimension of crystalline spinel samples as well as to the presence of crystallographic defects and/or impurities in the spinel matrix. The good agreement between experimental band-gap values and the theoretical ones strongly supports the use of our semiempirical approach in the area of band-gap engineering of new materials
A Generalized Semiempirical Approach to the Modeling of the Optical Band Gap of Ternary Al-(Ga, Nb, Ta, W) Oxides Containing Different Alumina Polymorphs
A generalization of the modeling equation of optical band gap values for ternary oxides, as a function of cationic ratio composition, is carried out based on the semiempirical correlation between the differences in the electronegativity of oxygen and the average cationic electronegativity proposed some years ago. In this work, a novel approach is suggested to account for the differences in the band gap values of the different polymorphs of binary oxides as well as for ternary oxides existing in different crystalline structures. A preliminary test on the validity of the proposed modeling equations has been carried out by using the numerous experimental data pertaining to alumina and gallia polymorphs as well as the crystalline ternary Ga(1-x)AlxO3 polymorphs (α-Ga(1-x)AlxO3 and β-Ga(1-x)AlxO3) covering a large range of optical band gap values (4.50-8.50 eV). To make a more rigorous test of the modeling equation, we extended our investigation to amorphous ternary oxides anodically formed on Al-d-metal alloys (Al-Nb, Al-Ta, and Al-W) covering a large range of d-metal composition (xd-metal ≥ 0.2). In the last case, the novel approach allows one to overcome some difficulties experienced in fitting the optical band gap dependence from the Al-d-metal mixed anodic oxide composition as well as to provide a rationale for the departure, at the lowest d-metal content (xd-metal < 0.2), from the behavior observed for anodic films containing higher d-metal content
A nosocomial outbreak of 2009 pandemic influenza A(H1N1) in a paediatric oncology ward in Italy, October – November 2009
A nosocomial outbreak of 2009 pandemic influenza A(H1N1), with eight confirmed cases, occurred in a paediatric oncology ward in Italy, in October/November 2009. The fact that one case was infected despite being isolated and without contact to a symptomatic patient, hints towards potential transmission through a health care worker (HCW) and underlines the importance of vaccination of HCW who are involved in the care of critically ill patients
- …