26 research outputs found

    Апеляційний перегляд постанов місцевого суду, винесених за розглядом скарг на постанову про порушення кримінальної справи

    Get PDF
    Досліджуються основні проблеми апеляційної перевірки правомірності порушення кримінальної справи.Исследованы основные проблемы апелляционной проверки правомерности возбуж­дения уголовного дела.The article is dedicated to the main problems of the appellate review of instituting pros­ecution

    Spinal decompensation in degenerative lumbar scoliosis

    Get PDF
    Due to the aging population, degenerative scoliosis is a growing clinical problem. It is associated with back pain and radicular symptoms. The pathogenesis of degenerative scoliosis lies in degenerative changes of the spinal structures, such as the intervertebral disc, the facet joints and the vertebrae itself. Possibly muscle weakness also plays a role. However, it is not clear what exactly causes the decompensation to occur and what determines the direction of the curve. It is known that in the normal spine a pre-existing rotation exists at the thoracic level, but not at the lumbar level. In this retrospective study we have investigated if a predominant curve pattern can be found in degenerative scoliosis and whether symptoms are predominantly present at one side relative to the curve direction. The lumbar curves of 88 patients with degenerative scoliosis were analyzed and symptoms were recorded. It was found that curve direction depended significantly on the apical level of the curve. The majority of curves with an apex above L2 were convex to the right, whereas curves with an apex below L2 were more frequently convex to the left. This would indicate that also in degenerative scoliosis the innate curvature and rotational pattern of the spine plays a role in the direction of the curve. Unilateral symptoms were not coupled to the curve direction. It is believed that the symptoms are related to local and more specific degenerative changes besides the scoliotic curve itself

    Compaction creep of simulated anhydrite fault gouge by pressure solution: theory v. experiments and implications for fault sealing

    No full text
    The sealing and healing behaviour of faults filled with anhydrite gouge, by processes such as pressure solution, is of interest in relation both to the integrity of faults cutting geological storage systems sealed by anhydrite caprocks and to seismic events that may nucleate in anhydrite-bearing sequences, such as those present in the seismogenic zone beneath the Apennines. We have developed a detailed series of kinetic models for pressure solution in anhydrite fault gouge, allowing for dissolution, diffusion and precipitation control, to estimate the time scale on which such sealing and healing effects occur. We compare the models obtained with previously reported experimental data on compaction creep rates in simulated anhydrite fault gouge, tested under wet, upper crustal conditions. The results confirm earlier indications that compaction under these conditions likely occurs by diffusion-controlled pressure solution. Applying our most rigorous model for diffusion-controlled pressure solution, constrained by the fit to the experimental data, we infer that anhydrite fault sealing will occur in a few decades at most, which is rapid compared with both CO2 storage time scales and with the recurrence interval for seismicity in the Apennines

    Healing and sliding stability of simulated anhydrite fault gouge : Effects of water, temperature and CO2

    No full text
    Anhydrite-bearing faults are currently of interest to 1) CO2-storage sites capped by anhydrite caprocks (such as those found in the North Sea) and 2) seismically active faults in evaporite formations (such as the Italian Apennines). In order to assess the likelihood of fault reactivation, the mode of fault slip and/or fault leakage, it is important to understand the evolution of frictional strength during periods of no slip and upon reloading (healing and relaxation behavior) and of the velocity dependence of friction of anhydrite fault gouge. Therefore, we performed slide–hold–slide experiments combined with a velocity-stepping sequence using simulated anhydrite fault gouge (> 95 wt.% CaSO4). Vacuum-dry and water-wet experiments were performed at temperatures ranging from 20 to 150 °C, and at an effective normal stress of 25 MPa. We also performed tests using dry CO2, water-wetted CO2 and CO2-saturated water as pore fluid, but only at 120 °C. If pore fluid was present, a fluid pressure of 15 MPa was present. Vacuum-dry samples exhibit similar frictional healing to samples containing lab-air, but healing is significantly enhanced in wet samples. Dry samples exhibit velocity-weakening behavior at T ≥ 120 °C, and wet samples exhibit velocity-strengthening behavior over the full temperature range. The presence of CO2 does not influence the healing behavior or the velocity-dependence of friction. Samples containing water-wetted CO2 exhibit behavior similar to wet samples. We infer that the healing in dry samples is controlled by plastic asperity creep (Dieterich-type), possibly through dislocation creep and/or twinning. In wet samples healing is inferred to be controlled by increases in contact area and cohesion by pressure solution. Using a pressure solution rate model to extrapolate healing by contact area growth indicates that the maximum re-strengthening through such a mechanism will only take days to tens of days

    Healing and sliding stability of simulated anhydrite fault gouge: Effects of water, temperature and CO2

    No full text
    Anhydrite-bearing faults are currently of interest to 1) CO2-storage sites capped by anhydrite caprocks (such as those found in the North Sea) and 2) seismically active faults in evaporite formations (such as the Italian Apennines). In order to assess the likelihood of fault reactivation, the mode of fault slip and/or fault leakage, it is important to understand the evolution of frictional strength during periods of no slip and upon reloading (healing and relaxation behavior) and of the velocity dependence of friction of anhydrite fault gouge. Therefore, we performed slide–hold–slide experiments combined with a velocity-stepping sequence using simulated anhydrite fault gouge (> 95 wt.% CaSO4). Vacuum-dry and water-wet experiments were performed at temperatures ranging from 20 to 150 °C, and at an effective normal stress of 25 MPa. We also performed tests using dry CO2, water-wetted CO2 and CO2-saturated water as pore fluid, but only at 120 °C. If pore fluid was present, a fluid pressure of 15 MPa was present. Vacuum-dry samples exhibit similar frictional healing to samples containing lab-air, but healing is significantly enhanced in wet samples. Dry samples exhibit velocity-weakening behavior at T ≥ 120 °C, and wet samples exhibit velocity-strengthening behavior over the full temperature range. The presence of CO2 does not influence the healing behavior or the velocity-dependence of friction. Samples containing water-wetted CO2 exhibit behavior similar to wet samples. We infer that the healing in dry samples is controlled by plastic asperity creep (Dieterich-type), possibly through dislocation creep and/or twinning. In wet samples healing is inferred to be controlled by increases in contact area and cohesion by pressure solution. Using a pressure solution rate model to extrapolate healing by contact area growth indicates that the maximum re-strengthening through such a mechanism will only take days to tens of days

    Factors controlling pore network development of thermally mature Early Palaeozoic mudstones from the Baltic Basin (N Poland)

    No full text
    Understanding the formation of pore space, especially in low porosity shales (as source rocks and as unconventional resources), is critical to the oil and gas industry, since pores control the space available for hydrocarbon and participate in hydrocarbon transport. We examined 87 Ordovician and Silurian mudstone samples collected from four wells located in the Pomeranian part of the Baltic Basin (northern Poland), one of the primary Polish targets for hydrocarbon exploration. These samples represent the Pelplin, the Pasłęk, the Jantar, the Prabuty, and the Sasino Formations, which still requires more detailed porosity studies. Our study aimed to identify factors controlling porosity development, by applying bulk techniques (organic petrology and TOC analyses, quantitative mineralogy, and porosimetry) as well as nano-to microscale techniques (thin section petrography, electron microscopy). The studied samples are mainly argillaceous mudstones. The results of porosimetry measurements, combined with image analysis, indicate that the pores of all studied rocks are dominated by micropores (pores <2 nm in diameter), mesopores (2–50 nm in diameter) and small macropores. The SEM images showed three main pore types: a) voids related to clay mineral aggregates, b) pores inside organic matter particles, and c) pores between other mineral grains. In the Jantar and Sasino mudstones, the organic matter content and its thermal maturity control porosity. The occurrence of solid bitumen in the rocks from these formations reduces samples’ mesoporosity because of the pore-clogging effect. In contrast, in the Pasłęk and Prabuty Formations, there is low organic matter content and specific surface area and the volume of mesopores increase with clay minerals content. In the Pelplin mudstones, there are no prevailing factors controlling porosity. Finally, we suggest that a combination of SEM image analysis and dual liquid porosity (DLP) measurements is a powerful method to assess porosity available for petroleum flow in mudstones.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Applied Geophysics and Petrophysic
    corecore