780 research outputs found

    Models of Type Theory Based on Moore Paths

    Full text link
    This paper introduces a new family of models of intensional Martin-L\"of type theory. We use constructive ordered algebra in toposes. Identity types in the models are given by a notion of Moore path. By considering a particular gros topos, we show that there is such a model that is non-truncated, i.e. contains non-trivial structure at all dimensions. In other words, in this model a type in a nested sequence of identity types can contain more than one element, no matter how great the degree of nesting. Although inspired by existing non-truncated models of type theory based on simplicial and cubical sets, the notion of model presented here is notable for avoiding any form of Kan filling condition in the semantics of types.Comment: This is a revised and expanded version of a paper with the same name that appeared in the proceedings of the 2nd International Conference on Formal Structures for Computation and Deduction (FSCD 2017

    Relating Two Semantics of Locally Scoped Names

    Get PDF
    The operational semantics of programming constructs involving locally scoped names typically makes use of stateful "dynamic allocation": a set of currently-used names forms part of the state and upon entering a scope the set is augmented by a new name bound to the scoped identifier. More abstractly, one can see this as a transformation of local scopes by expanding them outward to an implicit top-level. By contrast, in a neglected paper from 1994, Odersky gave a stateless lambda calculus with locally scoped names whose dynamics contracts scopes inward. The properties of "Odersky-style" local names are quite different from dynamically allocated ones and it has not been clear, until now, what is the expressive power of Odersky\u27s notion. We show that in fact it provides a direct semantics of locally scoped names from which the more familiar dynamic allocation semantics can be obtained by continuation-passing style (CPS) translation. More precisely, we show that there is a CPS translation of typed lambda calculus with dynamically allocated names (the Pitts-Stark nu-calculus) into Odersky\u27s lambda-nu-calculus which is computationally adequate with respect to observational equivalence in the two calculi

    Typal Heterogeneous Equality Types

    Get PDF
    The usual homogeneous form of equality type in Martin-L\"of Type Theory contains identifications between elements of the same type. By contrast, the heterogeneous form of equality contains identifications between elements of possibly different types. This paper introduces a simple set of axioms for such types. The axioms are equivalent to the combination of systematic elimination rules for both forms of equality, albeit with typal (also known as "propositional") computation properties, together with Streicher's Axiom K, or equivalently, the principle of uniqueness of identity proofs

    Nominal Equational Logic

    Get PDF
    AbstractThis paper studies the notion of “freshness” that often occurs in the meta-theory of computer science languages involving various kinds of names. Nominal Equational Logic is an extension of ordinary equational logic with assertions about the freshness of names. It is shown to be both sound and complete for the support interpretation of freshness and equality provided by the Gabbay-Pitts nominal sets model of names, binding and α-conversion

    Constructing Infinitary Quotient-Inductive Types

    Full text link
    This paper introduces an expressive class of quotient-inductive types, called QW-types. We show that in dependent type theory with uniqueness of identity proofs, even the infinitary case of QW-types can be encoded using the combination of inductive-inductive definitions involving strictly positive occurrences of Hofmann-style quotient types, and Abel's size types. The latter, which provide a convenient constructive abstraction of what classically would be accomplished with transfinite ordinals, are used to prove termination of the recursive definitions of the elimination and computation properties of our encoding of QW-types. The development is formalized using the Agda theorem prover.Comment: The accompanying Agda code can be found at https://doi.org/10.17863/CAM.4818

    Logical Step-Indexed Logical Relations

    Full text link
    Appel and McAllester's "step-indexed" logical relations have proven to be a simple and effective technique for reasoning about programs in languages with semantically interesting types, such as general recursive types and general reference types. However, proofs using step-indexed models typically involve tedious, error-prone, and proof-obscuring step-index arithmetic, so it is important to develop clean, high-level, equational proof principles that avoid mention of step indices. In this paper, we show how to reason about binary step-indexed logical relations in an abstract and elegant way. Specifically, we define a logic LSLR, which is inspired by Plotkin and Abadi's logic for parametricity, but also supports recursively defined relations by means of the modal "later" operator from Appel, Melli\`es, Richards, and Vouillon's "very modal model" paper. We encode in LSLR a logical relation for reasoning relationally about programs in call-by-value System F extended with general recursive types. Using this logical relation, we derive a set of useful rules with which we can prove contextual equivalence and approximation results without counting steps

    Modal dependent type theory and dependent right adjoints

    Get PDF
    In recent years we have seen several new models of dependent type theory extended with some form of modal necessity operator, including nominal type theory, guarded and clocked type theory, and spatial and cohesive type theory. In this paper we study modal dependent type theory: dependent type theory with an operator satisfying (a dependent version of) the K-axiom of modal logic. We investigate both semantics and syntax. For the semantics, we introduce categories with families with a dependent right adjoint (CwDRA) and show that the examples above can be presented as such. Indeed, we show that any finite limit category with an adjunction of endofunctors gives rise to a CwDRA via the local universe construction. For the syntax, we introduce a dependently typed extension of Fitch-style modal lambda-calculus, show that it can be interpreted in any CwDRA, and build a term model. We extend the syntax and semantics with universes

    Resource-Bound Quantification for Graph Transformation

    Full text link
    Graph transformation has been used to model concurrent systems in software engineering, as well as in biochemistry and life sciences. The application of a transformation rule can be characterised algebraically as construction of a double-pushout (DPO) diagram in the category of graphs. We show how intuitionistic linear logic can be extended with resource-bound quantification, allowing for an implicit handling of the DPO conditions, and how resource logic can be used to reason about graph transformation systems

    Psi-calculi: a framework for mobile processes with nominal data and logic

    Get PDF
    The framework of psi-calculi extends the pi-calculus with nominal datatypes for data structures and for logical assertions and conditions. These can be transmitted between processes and their names can be statically scoped as in the standard pi-calculus. Psi-calculi can capture the same phenomena as other proposed extensions of the pi-calculus such as the applied pi-calculus, the spi-calculus, the fusion calculus, the concurrent constraint pi-calculus, and calculi with polyadic communication channels or pattern matching. Psi-calculi can be even more general, for example by allowing structured channels, higher-order formalisms such as the lambda calculus for data structures, and predicate logic for assertions. We provide ample comparisons to related calculi and discuss a few significant applications. Our labelled operational semantics and definition of bisimulation is straightforward, without a structural congruence. We establish minimal requirements on the nominal data and logic in order to prove general algebraic properties of psi-calculi, all of which have been checked in the interactive theorem prover Isabelle. Expressiveness of psi-calculi significantly exceeds that of other formalisms, while the purity of the semantics is on par with the original pi-calculus.Comment: 44 page
    corecore