16,474 research outputs found

    A study of topologies and protocols for fiber optic local area network

    Get PDF
    The emergence of new applications requiring high data traffic necessitates the development of high speed local area networks. Optical fiber is selected as the transmission medium due to its inherent advantages over other possible media and the dual optical bus architecture is shown to be the most suitable topology. Asynchronous access protocols, including token, random, hybrid random/token, and virtual token schemes, are developed and analyzed. Exact expressions for insertion delay and utilization at light and heavy load are derived, and intermediate load behavior is investigated by simulation. A new tokenless adaptive scheme whose control depends only on the detection of activity on the channel is shown to outperform round-robin schemes under uneven loads and multipacket traffic and to perform optimally at light load. An approximate solution to the queueing delay for an oscillating polling scheme under chaining is obtained and results are compared with simulation. Solutions to the problem of building systems with a large number of stations are presented, including maximization of the number of optical couplers, and the use of passive star/bus topologies, bridges and gateways

    Coherent control of microwave pulse storage in superconducting circuits

    Full text link
    Coherent pulse control for quantum memory is viable in the optical domain but nascent in microwave quantum circuits. We show how to realize coherent storage and on-demand pulse retrieval entirely within a superconducting circuit by exploiting and extending existing electromagnetically induced transparency technology in superconducting quantum circuits. Our scheme employs a linear array of superconducting artificial atoms coupled to a microwave transmission line.Comment: 13 pages, 4 figures and some supplementary materia

    Turbine vane coolant flow variations and calculated effects on metal temperatures

    Get PDF
    Seventy-two air-cooled turbine vanes were tested to determine coolant flow variations among the vanes. Calculations were made to estimate the effect of measured coolant flow variations on local vane metal temperatures. The calculations were based on the following assumed operating conditions: turbine inlet temperature, 1700 K (2600 F); turbine inlet pressure, 31 N/sq cm (45 psia); coolant inlet temperature, 811 K (1000 F); and total coolant to gas flow ratio, 0.065. Variations of total coolant flow were not large (about 10 percent from the arithmetic mean) for all 72 vanes, but variations in local coolant flows were large. The local coolant flow variations ranged from 8 to 75 percent, and calculated metal temperature variations ranged from 8 to 60 K (15 to 180 F)

    Scanning Tunneling Spectroscopic Studies of the Low-Energy Quasiparticle Excitations in Cuprate Superconductors

    Get PDF
    We report scanning tunneling spectroscopic (STS) studies of the low-energy quasiparticle excitations of cuprate superconductors as a function of magnetic field and doping level. Our studies suggest that the origin of the pseudogap (PG) is associated with competing orders (COs), and that the occurrence (absence) of PG above the superconducting (SC) transition T_c is associated with a CO energy Δ_(CO) larger (smaller) than the SC gap Δ_(SC). Moreover, the spatial homogeneity of Δ_(SC) and Δ_(CO) depends on the type of disorder in different cuprates: For optimally and under-doped YBa_2Cu_3O_(7−δ) (Y-123), we find that Δ_(SC) < Δ_(CO) and that both Δ_(SC) and Δ(CO) exhibit long-range spatial homogeneity, in contrast to the highly inhomogeneous STS in Bi_2Sr_2CaCu_2O_(8+x) (Bi-2212). We attribute this contrast to the stoichiometric cations and ordered apical oxygen in Y-123, which differs from the non-stoichiometric Bi-to-Sr ratio in Bi-2212 with disordered Sr and apical oxygen in the SrO planes. For Ca-doped Y-123, the substitution of Y by Ca contributes to excess holes and disorder in the CuO_2 planes, giving rise to increasing inhomogeneity, decreasing Δ_(SC) and Δ_(CO), and a suppressed vortex-solid phase. For electron-type cuprate Sr_(0.9)La_(0.1)CuO_2 (La-112), the homogeneous Δ_(SC) and Δ_(CO) distributions may be attributed to stoichiometric cations and the absence of apical oxygen, with Δ_(CO) < Δ_(SC) revealed only inside the vortex cores. Finally, the vortex-core radius (ξ_(halo)) in electron-type cuprates is comparable to the SC coherence length ξ_(SC), whereas ξ_(halo) ∼ 10ξ_(SC) in hole-type cuprates, suggesting that ξ_(halo) may be correlated with the CO strength. The vortex-state irreversibility line in the magnetic field versus temperature phase diagram also reveals doping dependence, indicating the relevance of competing orders to vortex pinning

    Measurement of a Sign-Changing Two-Gap Superconducting Phase in Electron-Doped Ba(Fe_{1-x}Co_x)_2As_2 Single Crystals using Scanning Tunneling Spectroscopy

    Get PDF
    Scanning tunneling spectroscopic studies of Ba(Fe1−xCox)2As2Ba(Fe_{1-x}Co_x)_2As_2 (x = 0.06, 0.12) single crystals reveal direct evidence for predominantly two-gap superconductivity. These gaps decrease with increasing temperature and vanish above the superconducting transition TcT_c. The two-gap nature and the slightly doping- and energy-dependent quasiparticle scattering interferences near the wave-vectors (±π,0)(\pm \pi, 0) and (0,±π)(0, \pm \pi) are consistent with sign-changing ss-wave superconductivity. The excess zero-bias conductance and the large gap-to-TcT_c ratios suggest dominant unitary impurity scattering.Comment: 4 pages, 4 figures. Paper accepted for publication in Physical Review Letters. Contact author: Nai-Chang Yeh ([email protected]

    Heterostructure solar cells

    Get PDF
    The performance of gallium arsenide solar cells grown on Ge substrates is discussed. In some cases the substrate was thinned to reduce overall cell weight with good ruggedness. The conversion efficiency of 2 by 2 cm cells under AMO reached 17.1 percent with a cell thickness of 6 mils. The work described forms the basis for future cascade cell structures, where similar interconnecting problems between the top cell and the bottom cell must be solved. Applications of the GaAs/Ge solar cell in space and the expected payoffs are discussed

    Evidence for Strain-Induced Local Conductance Modulations in Single-Layer Graphene on SiO_2

    Get PDF
    Graphene has emerged as an electronic material that is promising for device applications and for studying two-dimensional electron gases with relativistic dispersion near two Dirac points. Nonetheless, deviations from Dirac-like spectroscopy have been widely reported with varying interpretations. Here we show evidence for strain-induced spatial modulations in the local conductance of single-layer graphene on SiO_2 substrates from scanning tunneling microscopic (STM) studies. We find that strained graphene exhibits parabolic, U-shaped conductance vs bias voltage spectra rather than the V-shaped spectra expected for Dirac fermions, whereas V-shaped spectra are recovered in regions of relaxed graphene. Strain maps derived from the STM studies further reveal direct correlation with the local tunneling conductance. These results are attributed to a strain-induced frequency increase in the out-of-plane phonon mode that mediates the low-energy inelastic charge tunneling into graphene

    Towards a black body for near-field thermal radiation

    Full text link
    We study the near-field heat exchange between hyperbolic materials and demonstrate that these media are able to support broadband frustrated modes which transport heat by photon tunnelling with a high efficiency close to the theoretical limit. We predict that hyperbolic materials can be designed to be perfect thermal emitters at nanoscale and derive the near-field analog of the blackbody limit
    • …
    corecore