594 research outputs found

    On hyperbolicity of SU(2)-equivariant, punctured disc bundles over the complex affine quadric

    Full text link
    Given a holomorphic line bundle over the complex affine quadric Q2Q^2, we investigate its Stein, SU(2)-equivariant disc bundles. Up to equivariant biholomorphism, these are all contained in a maximal one, say Ωmax\Omega_{max}. By removing the zero section to Ωmax\Omega_{max} one obtains the unique Stein, SU(2)-equivariant, punctured disc bundle over Q2Q^2 which contains entire curves. All other such punctured disc bundles are shown to be Kobayashi hyperbolic.Comment: 15 pages, v2: minor changes, to appear in Transformation Group

    Further evidence of antibunching of two coherent beams of fermions

    Full text link
    We describe an experiment confirming the evidence of the antibunching effect on a beam of non interacting thermal neutrons. The comparison between the results recorded with a high energy-resolution source of neutrons and those recorded with a broad energy-resolution source enables us to clarify the role played by the beam coherence in the occurrence of the antibunching effect.Comment: 4 pages, 3 figure

    On the torque on birefringent plates induced by quantum fluctuations

    Full text link
    We present detailed numerical calculations of the mechanical torque induced by quantum fluctuations on two parallel birefringent plates with in plane optical anisotropy, separated by either vacuum or a liquid (ethanol). The torque is found to vary as sin(2θ)\sin(2\theta), where θ\theta represents the angle between the two optical axes, and its magnitude rapidly increases with decreasing plate separation dd. For a 40 μ\mum diameter disk, made out of either quartz or calcite, kept parallel to a Barium Titanate plate at d100d\simeq 100 nm, the maximum torque (at θ=π4\theta={\pi\over 4}) is of the order of 1019\simeq 10^{-19} N\cdotm. We propose an experiment to observe this torque when the Barium Titanate plate is immersed in ethanol and the other birefringent disk is placed on top of it. In this case the retarded van der Waals (or Casimir-Lifshitz) force between the two birefringent slabs is repulsive. The disk would float parallel to the plate at a distance where its net weight is counterbalanced by the retarded van der Waals repulsion, free to rotate in response to very small driving torques.Comment: 7 figures, submitted to Phys. Rev.

    Impact of different types of physical activity in green urban space on adult health and behaviors: A systematic review

    Get PDF
    This systematic review aimed to investigate the type of physical activity carried out in green urban spaces by the adult population and to value its impact on the population’s health. Additionally, another purpose was to examine if the presence of outdoor gyms in green urban spaces can promote participation in physical activity among adults. Searches of electronic databases, with no time restrictions and up to June 2020, resulted in 10 studies meeting the inclusion criteria. A quantitative assessment is reported as effect size. Many people practiced walking activity as a workout, which showed improvements in health. Walking is the most popular type of training due to its easy accessibility and it not requiring equipment or special skills. Outdoor fitness equipment has been installed in an increasing number of parks and has become very popular worldwide. Further, outdoor fitness equipment provides free access to fitness training and seems to promote physical activity in healthy adults. However, other studies about outdoor fitness equipment efficiency are needed. People living near to equipped areas are more likely to perform outdoor fitness than those who live further away. The most common training programs performed in green urban spaces included exercises with free and easy access, able to promote physical health and perception

    Automatic lung segmentation and quantification of aeration in computed tomography of the chest using 3D transfer learning

    Get PDF
    Background: Identification of lung parenchyma on computer tomographic (CT) scans in the research setting is done semi-automatically and requires cumbersome manual correction. This is especially true in pathological conditions, hindering the clinical application of aeration compartment (AC) analysis. Deep learning based algorithms have lately been shown to be reliable and time-efficient in segmenting pathologic lungs. In this contribution, we thus propose a novel 3D transfer learning based approach to quantify lung volumes, aeration compartments and lung recruitability. Methods: Two convolutional neural networks developed for biomedical image segmentation (uNet), with different resolutions and fields of view, were implemented using Matlab. Training and evaluation was done on 180 scans of 18 pigs in experimental ARDS (u2NetPig) and on a clinical data set of 150 scans from 58 ICU patients with lung conditions varying from healthy, to COPD, to ARDS and COVID-19 (u2NetHuman). One manual segmentations (MS) was available for each scan, being a consensus by two experts. Transfer learning was then applied to train u2NetPig on the clinical data set generating u2NetTransfer. General segmentation quality was quantified using the Jaccard index (JI) and the Boundary Function score (BF). The slope between JI or BF and relative volume of non-aerated compartment (SJI and SBF, respectively) was calculated over data sets to assess robustness toward non-aerated lung regions. Additionally, the relative volume of ACs and lung volumes (LV) were compared between automatic and MS. Results: On the experimental data set, u2NetPig resulted in JI = 0.892 [0.88 : 091] (median [inter-quartile range]), BF = 0.995 [0.98 : 1.0] and slopes SJI = −0.2 {95% conf. int. −0.23 : −0.16} and SBF = −0.1 {−0.5 : −0.06}. u2NetHuman showed similar performance compared to u2NetPig in JI, BF but with reduced robustness SJI = −0.29 {−0.36 : −0.22} and SBF = −0.43 {−0.54 : −0.31}. Transfer learning improved overall JI = 0.92 [0.88 : 0.94], P < 0.001, but reduced robustness SJI = −0.46 {−0.52 : −0.40}, and affected neither BF = 0.96 [0.91 : 0.98] nor SBF = −0.48 {−0.59 : −0.36}. u2NetTransfer improved JI compared to u2NetHuman in segmenting healthy (P = 0.008), ARDS (P < 0.001) and COPD (P = 0.004) patients but not in COVID-19 patients (P = 0.298). ACs and LV determined using u2NetTransfer segmentations exhibited < 5% volume difference compared to MS. Conclusion: Compared to manual segmentations, automatic uNet based 3D lung segmentation provides acceptable quality for both clinical and scientific purposes in the quantification of lung volumes, aeration compartments, and recruitability

    An improved method on stimulated T-lymphocytes to functionally characterize novel and known LDLR mutations.

    Get PDF
    The main causes of familial hypercholesterolemia (FH) are mutations in LDL receptor (LDLR) gene. Functional studies are necessary to demonstrate the LDLR function impairment caused by mutations and would be useful as a diagnostic tool if they allow discrimination between FH patients and controls. In order to identify the best method to detect LDLR activity, we compared continuous Epstein-Barr virus (EBV)-transformed B-lymphocytes and mitogen stimulated T-lymphocytes. In addition, we characterized both novel and known mutations in the LDLR gene. T-lymphocytes and EBV-transformed B-lymphocytes were obtained from peripheral blood of 24 FH patients and 24 control subjects. Functional assays were performed by incubation with fluorescent LDL followed by flow cytometry analysis. Residual LDLR activity was calculated normalizing fluorescence for the mean fluorescence of controls. With stimulated T-lymphocytes we obtained a better discrimination capacity between controls and FH patients compared with EBV-transformed B-lymphocytes as demonstrated by receiver operating characteristic (ROC) curve analysis (the areas under the curve are 1.000 and 0.984 respectively; P < 0.0001 both). The characterization of LDLR activity through T-lymphocytes is more simple and faster than the use of EBV-transformed B-lymphocytes and allows a complete discrimination between controls and FH patients. Therefore the evaluation of residual LDLR activity could be helpful not only for mutation characterization but also for diagnostic purposes

    Antiangiogenic activity of iridoids from Lamiaceae and Plantaginaceae species

    Get PDF
    Iridoids are a group of natural compounds, occurring in a great number of plant families, usually as glycosides. The considerable interest in iridoids is due to their ecological role as plant protectant and to their wide spectrum of biological activities, including cardioprotection, neuroprotection, anti-inflammatory, and anticancer activities [1]. Interestingly, some iridoid glycosides were found to have a potent antiangiogenic activity [2-3]. Angiogenesis process may be involved in tumour development, thus its inhibition appears to be a promising approach in anti-inflammatory and anticancer therapies [4]. Within this context, the aim of the present study was the isolation and characterization of iridoid derivatives from two Lamiaceae species, Stachys ocymastrum (L.) Briq and Premna resinosa (Hochst.) Schauer leaves, and from Anarrhinum pedatum Desf. aerial parts, belonging to Plantaginaceae family, together with the evaluation of their antiangiogenic potential. The chemical study of investigated plants afforded to the isolation of one new and four known iridoid glycosides from S. ocymastrum, nine known iridoid diglycosides from P. resinosa, and ten new and five known iridoid glycosides from A. pedatum, identified by NMR and MS analyses. The antiangiogenic effects of the isolates were reported on new blood vessels formation using two in vivo models: zebrafish embryos and chick embryo chorioallantoic membrane [5]. Among the tested iridoids, -hydroxyipolamiide, ipolamiide, buddlejoside A5, and 6′-O-menthiafoloylmussaenosidic acid-11-(5-O-β-D-fructopyranosyl) ester showed a significant antiangiogenic activity in both assays, reducing the growth of blood vessels. Weaker antiangiogenic effects were also observed for some other iridoids, thus suggesting this class of compounds as promising antiangiogenic agents

    Specialized metabolites from plants as a source of new multi-target antiviral drugs: a systematic review

    Get PDF
    Viral infections have always been the main global health challenge, as several potentially lethal viruses, including the hepatitis virus, herpes virus, and influenza virus, have affected human health for decades. Unfortunately, most licensed antiviral drugs are characterized by many adverse reactions and, in the long-term therapy, also develop viral resistance; for these reasons, researchers have focused their attention on investigating potential antiviral molecules from plants. Natural resources indeed offer a variety of specialized therapeutic metabolites that have been demonstrated to inhibit viral entry into the host cells and replication through the regulation of viral absorption, cell receptor binding, and competition for the activation of intracellular signaling pathways. Many active phytochemicals, including flavonoids, lignans, terpenoids, coumarins, saponins, alkaloids, etc., have been identified as potential candidates for preventing and treating viral infections. Using a systematic approach, this review summarises the knowledge obtained to date on the in vivo antiviral activity of specialized metabolites extracted from plant matrices by focusing on their mechanism of action
    corecore