10,317 research outputs found

    Creation of a dipolar superfluid in optical lattices

    Full text link
    We show that by loading a Bose-Einstein condensate (BEC) of two different atomic species into an optical lattice, it is possible to achieve a Mott-insulator phase with exactly one atom of each species per lattice site. A subsequent photo-association leads to the formation of one heteronuclear molecule with a large electric dipole moment, at each lattice site. The melting of such dipolar Mott-insulator creates a dipolar superfluid, and eventually a dipolar molecular BEC.Comment: 4 pages, 2 eps figure

    On the ground--state energy of finite Fermi systems

    Get PDF
    We study the ground--state shell correction energy of a fermionic gas in a mean--field approximation. Considering the particular case of 3D harmonic trapping potentials, we show the rich variety of different behaviors (erratic, regular, supershells) that appear when the number--theoretic properties of the frequency ratios are varied. For self--bound systems, where the shape of the trapping potential is determined by energy minimization, we obtain accurate analytic formulas for the deformation and the shell correction energy as a function of the particle number NN. Special attention is devoted to the average of the shell correction energy. We explain why in self--bound systems it is a decreasing (and negative) function of NN.Comment: 10 pages, 5 figures, 2 table

    Anharmonicity Induced Resonances for Ultracold Atoms and their Detection

    Full text link
    When two atoms interact in the presence of an anharmonic potential, such as an optical lattice, the center of mass motion cannot be separated from the relative motion. In addition to generating a confinement-induced resonance (or shifting the position of an existing Feshbach resonance), the external potential changes the resonance picture qualitatively by introducing new resonances where molecular excited center of mass states cross the scattering threshold. We demonstrate the existence of these resonances, give their quantitative characterization in an optical superlattice, and propose an experimental scheme to detect them through controlled sweeping of the magnetic field.Comment: 6 pages, 5 figures; expanded presentatio

    Dilute Birman--Wenzl--Murakami Algebra and Dn+1(2)D^{(2)}_{n+1} models

    Get PDF
    A ``dilute'' generalisation of the Birman--Wenzl--Murakami algebra is considered. It can be ``Baxterised'' to a solution of the Yang--Baxter algebra. The Dn+1(2)D^{(2)}_{n+1} vertex models are examples of corresponding solvable lattice models and can be regarded as the dilute version of the Bn(1)B^{(1)}_{n} vertex models.Comment: 11 page

    Photoassociation spectroscopy of a Spin-1 Bose-Einstein condensate

    Full text link
    We report on the high resolution photoassociation spectroscopy of a 87^{87}Rb spin-1 Bose-Einstein condensate to the 1g(P3/2)v=1521_\mathrm{g} (P_{3/2}) v = 152 excited molecular states. We demonstrate the use of spin dependent photoassociation to experimentally identify the molecular states and their corresponding initial scattering channel. These identifications are in excellent agreement with the eigenvalues of a hyperfine-rotational Hamiltonian. Using the observed spectra we estimate the change in scattering length and identify photoassociation laser light frequency ranges that maximize the change in the spin-dependent mean-field interaction energy.Comment: 5 pages, 4 figure

    Open mirror symmetry for Pfaffian Calabi-Yau 3-folds

    Full text link
    We investigate the open mirror symmetry of certain non-complete intersection Calabi- Yau 3-folds, so called pfaffian Calabi-Yau. We perform the prediction of the number of disk invariants of several examples by using the direct integration method proposed recently and the open mirror symmetry. We treat several pfaffian Calabi-Yau 3-folds in P6\mathbb{P}^6 and branes with two discrete vacua. Some models have the two special points in its moduli space, around both of which we can consider different A-model mirror partners. We compute disc invariants for both cases. This study is the first application of the open mirror symmetry to the compact non-complete intersections in toric variety.Comment: 64 pages; v2: typos corrected, minor changes, references added; v3: published version, minor corrections and improvement

    A Concept for Attribute-Based Authorization on D-Grid Resources

    Get PDF
    In Germany's D-Grid project numerous Grid communities are working together to provide a common overarching Grid infrastructure. The major aims of D-Grid are the integration of existing Grid deployments and their interoperability. The challenge lies in the heterogeneity of the current implementations: three Grid middleware stacks and different Virtual Organization management approaches have to be embraced to achieve the intended goals. In this article we focus oil the implementation of an attribute-based authorization infrastructure that not only leverages the well-known VO attributes but also campus attributes managed by a Shibboleth federation

    Aperiodic Ising Quantum Chains

    Full text link
    Some years ago, Luck proposed a relevance criterion for the effect of aperiodic disorder on the critical behaviour of ferromagnetic Ising systems. In this article, we show how Luck's criterion can be derived within an exact renormalisation scheme for Ising quantum chains with coupling constants modulated according to substitution rules. Luck's conjectures for this case are confirmed and refined. Among other outcomes, we give an exact formula for the correlation length critical exponent for arbitrary two-letter substitution sequences with marginal fluctuations of the coupling constants.Comment: 27 pages, LaTeX, 1 Postscript figure included, using epsf.sty and amssymb.sty (one error corrected, some minor changes

    Quantum information processing with single photons and atomic ensembles in microwave coplanar waveguide resonators

    Full text link
    We show that pairs of atoms optically excited to the Rydberg states can strongly interact with each other via effective long-range dipole-dipole or van der Waals interactions mediated by their non-resonant coupling to a common microwave field mode of a superconducting coplanar waveguide cavity. These cavity mediated interactions can be employed to generate single photons and to realize in a scalable configuration a universal phase gate between pairs of single photon pulses propagating or stored in atomic ensembles in the regime of electromagnetically induced transparency

    Geometric quantum gate for trapped ions based on optical dipole forces induced by Gaussian laser beams

    Full text link
    We present an implementation of quantum logic gates via internal state dependent displacements of ions in a linear Paul trap caused by optical dipole forces. Based on a general quantum analysis of the system dynamics we consider specific implementations with alkaline earth ions. For experimentally realistic parameters gate infidelities as low as 10−410^{-4} can be obtained.Comment: 10 pages, 4 figure
    • 

    corecore