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Abstract A 'dilute' g e n e w o n  of the Birman-WenzI-Murakami algebra is considered. It 
can be 'Baxterized' to a solution of the Yang-Baxterdgebm The D f i ,  vertex models wnstitute 
a series of solvable lattice models which realize this algebraic s!n~unre. They can be regarded 
as a dilute version of the BP vertex m ~ d e l ~ .  

1. Introduction 

The theory of two-dimensional solvable lattice models is intimately connected with a list 
of algebraic structures with a wide range of applications in mathematics and physics 113. 
Among those are, for instance, the braid group [21 and the Tempedey-Lieb [3] and Hecke 
algebras [4]. The braid and Temperley-Lieb or monoid [SI operators were combined into 
a single (so-called braid-monoid) algebra by Birman and Wend [6] and independently by 
Murakami [fl (see also [.SI). Besides being closely related to solvable lattice models, these 
algebras have another important property: they admit a simple diagrammatic interpretation 
in terms of transformations of strands 01 strings and are of importance in the theory of 
knot and link invariants (see e.g. [SI). Recently, a generalization of braid-monoid algebras 
has been introduced 191 which amounts to considering strings of different 'colours'. These 
are connected with recently constructed critical solvable lattice models [10-13] which are 
related to (coloured) dense or dilute loop models. 

In what follows, let us briefly recollect the basic definitions. A braid-monoid algebra 
(also called knit or tangle algebra) is defined as the algebra generated by bj. bJ:' and ej 
(1 < j < N - 1, where N corresponds to the number of strings in the diagrammatic 
interpretation mentioned above) subject to the following list of relations: 

bib,:' = b-'b- - I I J -  

bjbk = bkbj for l j  - kl z 1 
bjbj+lbj = bj+lbjbj+i 

e2 J = &j 

ejek = ekej 
ejejilej = ej 

bjej = ejbj = oej 
bjek = qbj for I j - kl > 1 
bjalbjejil = ejbjllbj = ejejhl. 

for I j - kl > 1 
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Here f i  and o are central elements (hence numbers in any irreducible representation) and 
I denotes the identity. Equations (1.1) are the braid relations, and equations (1.2) are the 
defining relations of the Temperley-Lieb algebra [3]. Usually, two equations are added to 
these relations, which are 

f(6,) = 0 g(bj) = ej (1.4) 
where f and g are some polynomials. The algebra originally investigated in [6, 71 (the 
Birman-Wend-Murakami algebra), for example, corresponds to the case where f is a 
cubic and g a quadratic polynomial in the braids. ?he reason why these equations are 
listed separately is that they do not have a diagrammatic representation and that one might 
consider these as properties of certain representations rather than as part of the defining 
relations of the algebra. 

Solvable lattice models are commonly constructed as vertex or as face or IRF (interaction- 
round-a-face) [14] models whose Boltzmann weights satisfy the Yang-Baxter equation. T h i s  
property can equivalently be stated in the form that they give a representation of the Yang- 
Baxter algebra [14-161 defined by 

(1.5) 
Xj(U)Xjtl(U + V)Xj(u) = Xjtl(u)Xj(U + u)Xj+l(U) 
X,(u)Xk(u) = Xk(u)X,(u) for l j  - kl > 1 

where Xj(u) (U denotes the spectral parameter) are local operators whose matrix elements 
are the Boltzmann weights of the model (see, e.g. [8] for details). For vertex models, 
these Yang-Baxter operators (also called ‘local face operators’) are particularly simple 
as they act on an N-fold tensor space ( N  being the number of vertices in one row), 
acting as the R matrix (to be precise, as &U) = PR(u)  where P is the permutation map 
P : U @ w H w @ U) at slots j and j + 1 and as the identity elsewhere. 

Every crossing-symmetric (see e.g. [SI) representation of the Yang-Baxter algebra yieIds 
a representation of the braid-monoid algebra by setting 

where h is the crossing parameter and K and e(u) are appropriately chosen normalization 
factors. Conversely, one may be able to ‘Baxterize’ [I71 a representation of the braid- 
monoid algebra to a representation of the full Yang-Baxter algebra. This is especially 
useful if one can find a general expression for the Yang-Baxter operator in terms of the 
braids and monoids which can be shown to fulfill the Yang-Baxter algebra as a consequence 
ofthe algebraic relations alone (maybe apart from some additional assumptions, for instance, 
about the polynomial reduction relations (1.4)). In this way, each appropriate representation 
of the braid-monoid algebra gives rise to a solvable lattice model. 

This paper is organised as follows. To start with, we give a short summary of the 
Birman-Wenzl-Murakami case which corresponds to a braid-monoid algebra where the 
braids satisfy a cubic reduction relation. Representations of this algebra occur in the EL1), 
CA’), D,?. and Ai’) series of vertex models 118, 191 and associated face models. This is of 
course well known [20,21], but still there are a few surprising observations which arise. In 
section 3, we inboduce the dilute generalization of the Birman-Wend-Murakami algebra 
and mention its graphical interpretation in terms of diagrams acting on strings of two kinds. 
This algebra is then ‘Baxterized‘ [17] to a solution of the Yang-Baxter algebra (1.5) in 
section 4. Here, the corresponding examples of known models are the Df?] vertex models 
[19]. The associated representation of the dilute algebra can be regarded as a dilute version 
of the Birman-Wenzl-Mura!ami algebra related to the BA1) models, which becomes more 
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transparent by a suitable change of basis in the expression of the R matrix in [19]. Finally, 
the results are summarized in section 5. 

2. Birman-Wed-Murakad algebra 

We assume that the braid satisfies the cubic 

(&j - u-'z)(&j + UZ)(&j - ur21) = 0 
where the third eigenvalue is the twist o and hence 

2 O=Ur 

I (bj - &; ) 
U - U-1 . e j = I +  

The braid-monoid algebra ( l . lHl .3)  with these additional relations is known as the 
Birman-Wed-Murakami 0 algebra. Then it is easy to show that the following ansatz 
satisfies the Yang-Baxter algebra (1.5) [21]: 

X,(u)  = Z + r-' q-' (z - z - ' )  (r-'z &j - rz-' b;'). (2.3) 

Here z = exp(iu) (U denotes the spectral parameter). { = (U - d), and q = (r - r-l). 
It is a crossing symmetric with crossing parameter % given by r = exp(i%) (note that 
X j Q )  = ej), and satisfies the inversion relation 

X j ( U ) X j ( - U )  = du) e( -u)  1 (2.4) 
with 

e(u) = 3-I q-' (uz-' - u-lz) (5z-l- 7 - l ~ ) .  (25)  
Examples of solvable lattice models which can be expressed in this form [20,21] are given 
by the B,!'), CA'), DL'), and A,? vertex models [18, 191 and related face models [B]. In the 
notation of [I91 (where the R matrices are parametrized by x = z2 and a complex parameter 
k), the corresponding values of U and r are 

where, as in [191, = ka-', kurtz, ka-2, -&"+I for E,$1), C,?, D,? and A,", respectively. 
An interesting observation is in order. None of the above expressions in the BWM 

algebra are altered by interchanging U c* -u-I. This means that for a given representation 
there are in fact huo Yang-Baxter operators (which a priori are not the same, since the 
values of r are different), the second one being given by equation (2.3) with 

(U, r') + (U: r/*) = (-U-'. - 2 r 2 ) .  (2.7) 

Having a closer look at the examples provided by the vertex models, one realizes that the 
pairs (Ag, B,?) and D:')) are built on identical representations of the BWM algebra 
This implies that face models associated to AZ) and A2-' can be directly deduced from the 
corresponding Bil) 1221 and D,? models, respectively. Note that the AEL1 face models of 
[221 are actually built on C,? and not on Dil)  (in contrast to the vertex models of [18, 191). 
compare the discussion in [22] at the end of section 1. 
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Of course, one cannot obtain the recently constructed dilute A-D-E models [lo, 111 
(which are related to the Af) (Izergin-Korepin [23]) R matrix) in this way since these have 
a different algebraic structure (corresponding to a different gauge of the Af) R matrix, see 
[9] for details) as already mentioned above. 

Surprisingly, there is no obvious partner for the Ci') models among the list of known 
solvable models. This either means that the second solution defines a new additional series 
of solvable vertex models (and corresponding face models) or that they are related to other 
models. for instance by a gauge transformation. This question certainly deserves further 
clarification. 

3. Dilute braid-monoid algebra 

The idea of considering multi-colour generalizations of braid-monoid algebras originates in 
the investigation of recently constructed face models [10-12] which are related to (coloured) 
loop models. In [9], it was shown that these models could be conveniently described in 
terms of two-colour generalizations of the Temperley-Lieb algebra 131. This has been the 
motivation to look for similar generalizations of the BWM algebra and associated solvable 
lattice models. 

To generate the m-colour algebra, we need 'coloured' braid and monoid operators 
b;".'), e:." (where a. b = 1,2, . . . , m denote the colours) as well as projectors q") which 
project onto colour a at position j. Also, @ and m(') become the colour-dependent 
'Temperley-Lieb eigenvalue' and twist. Note that here we use supewripts '+' and '-' to 
distinguish coloured braids and 'inverse.' braids (see [9] for details). The full set of relations 
which defines the algebra (for the general m-colour case) can also be found in 191; they are 
straightforward generalizations of the one-colour relations (l.lHl.3). In complete analogy 
to the one-colour case, all the relations can be interpreted graphically where one bas to 
consider strings of two different colours (see [9]) which can never join. 

Here, we are only interested in a 'dilute' (two-colour) braid-monoid algebra by which 
we mean a two-colour case where one colour (we choose colour '2') is trivial in the sense 
that 

which implies @ = 1 and d2) = 1. Moreover, 

(a # b) (3.2) 

wherefore we drop the superscript zk for the mixed braids. This means that the only 
non-trivial operators acting on two sites j and j + 1 are b?('*l), e:,'), pyb)  = P.@) I P") /+I  

(a, b E [ 1,2)). by,'), and e:*') (a E {1,2), 2 = 3 - a). 
Thinking in terms of the graphical representation, this means that the second colour can 

also be interpreted as a vacancy of a string - but it may be easier to draw pictures with 
two types of strings as one has to keep in mind where these vacancies are. StiU, the special 
properties of the second colour lead to a somewhat simplified graphical representation than 
for the full two-colour algebra (equation (3.2) for instance means that one does not have to 
distinguish between two types of crossings of strings of different kind), see [24]. 

b+W) 
I 
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4. Baxterization of dilute B W M  algebra 

We now consider a dilute Birman-Wenzl-Murakami algebra as introduced in the preceding 
section where the subalgebra generated by objects of colour '1' is of Birman-Wend- 
Murakami type. Changing our notation of section 2 slightly, we assume the following 
cubic relation for the braids b;""): 

Here the third eigenvalue is again the twist o('). This yields 
= 52 

(4.2) 

The above relations together with the defining relations of the algebra (see section 3 
and [9]) are sufficient to show that 

X j ( u )  = pyV1) + 5-lq-l (z - z - l )  ( r - l zb / ( l ' l )  - 5z-I b Y ) )  
+ q-1 (rz-' - r-lz) ($2) + pj"") 

+ (1 -5-1 9-1 (2 - z-1) (52-1 - 5-1z)) p y )  

- c1 5-l q-I (z - z - ' )  (7z-l - 7 - l ~ )  (by,') + b?')) 

+ cZ 0-1 (z - z-1) (e:,') +e?')) 

(4.3) 
satisfies the Yang-Baxter algebra (1.5). Here, the notation is the same as in section 2, 
i.e., z = exp(iu), 5 = (U - U - ' ) ,  and q = (5 - ?-I). Furthermore, 4 =E:  = 1 are two 
arbitrary signs. The appearance of this freedom is actually trivial since all relations of the 
dilute BWM algebra are invariant under the transformations b;("b) --f (-l)"-b bj and 

ei ej 
The expression (4.3) is manifestly crossing-symmetric with crossing parameter A defined 

by 7 = exp(i). Note that in order to have the crossing transformations of the braid and 
monoid operators as suggested by the diagrammatic interpretation (see [9]) one should use 
62 = 1 in equation (4.3). This stems from the fact that the mixed monoid operators ey) 
are crossing-related to the mixed projectors p y )  (a # b)  which have a fixed sign due to 
the requirement that the sum of the projectors gives the identity. The inversion relation 
(2.4) is satisfied by (4.3) with 

(4.4) 

(0.b) --f (-1)"-b (arb). 

e (u )  = 6-l  q-' (02-l- u-'z) ( 5 8  - 5 - l ~ )  

which formally coincides with equation (2.5). 
Comparing the above expression (4.3) with equation (2.3). one observes that not only 

the inversion relation but also the part which only involves colour '1' has exactly the same 
form as for the pure Birman-Wend-Murakami case. But in both cases one has to keep in 
mind that for a given representation, 7 (and hence q )  has a different meaning in the two 
expressions (2.3) and (4.3). because the twist is given by oC1) = t2 here whereas o = ur2 
in the discussion of section 2. Obviously, the colour-'1' part of equation (4.3) alone does 
not satisfy a Yang-Bmter equation. 
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Alternatively, equation (4.3) (with E I  = 1) can be expressed in a more 'symmetric' form 
which reads 

Xj(U) = 11-1 (rz-' - r - ' z ) l  
- ( - I  q-1 ( z ' / ~  - z - ' / ~ )  (5z-I - r - 1 ~ )  ( Z I / ~  Bj + z-'j2 BY'  

J )  

+q-l (z1/2 - z-'/z) (sz-'/2 + r - l p )  (e(I'I) + p)) 
J 

where we used the same notation as in equation (4.3) and 

We include this second form since it treats both colours on an equal footing and might be 
more suitable for possible generalizations. 

As in section 2, exchanging U c1 -U-' leaves all algebraic expressions invariant But 
contrary to the former case, this does not lead to a different solution as the value of r 
(defined by d') = r2)  is not affected by this transformation and hence the Yang-Baxter 
operator is also unchanged. 

The remainder of this section deals with the Bi') and 0:;' vertex models. This follows 
a dual purpose: on one hand we want to show that the models provide examples for 
the algebraic shucture defined above, on the other hand we shall see that the representations 
corresponding to the vertex models can easily be obtained from those related to the 
BL') vertex models. The reason why this is important is simply that the same procedure 
should work for face models also. at least in the trigonometric case. 

Let us commence with the braid-monoid algebra representation related to the EA1) vertex 
models. We define 

bfl = I @ I  @ ... @ I @ b" @ I @  .. . @ I @ I 
ej = I @ I @  .. . @ I @ e  @ I @. . . @ I @ I (4.7) 

where b"l and e act at the two positions j and j + 1 and I denotes the identity in one 
factor. Using the notation of 1191, the explicit form of the dZ x dZ (d = 2n + 1) matrices 
b"' and e reads 
b = k-' (1 + (k  - 1) &,U*) &,U @ %U + (1 + (k - 1) &,a,) G , p  @ E p , U  

U U## 

Here, 1 <a, @ < d ,  a' = d +  1 -a (d = 2 n +  I), and 6 is defined by 
I a+q l < c r < n  

a = n + l  
a-i n + ~ < a < ~ n + l .  

(4.10) 

(4.1 1) 
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Besides, Ea,# are d x d r.:atrices with elements (&,&,j = &,.&j.+e. 

The matrices defined above satisfy the equations 

(b - k - l l )  (b  + k l )  (b  - k"1) = 0 (4.12) 
and 

Hence, 6:' and e, (4.7) form a representation of the BWM algebra with 

k2" - k-" o = P  a = 1 +  k - k - '  

(4.13) 

(4.14) 

The corresponding Yang-Baxter operator (2.3) with U = k and 5 = k"-'/' yields exactly 
the R matrix of [I91 (with x = 2'). 

In order to obtain a representation of the dilute B W M  algebra, we add one extra state to the 
local spaces, which is going to correspond to the second colour. The corresponding matrices 
which act on the tensor product of two spaces now have the dimension (d + 1)' x (d + 
The (two-site) projectors P ( ~ * * )  are given by pcanb) = P(') @ P@) with 

(4.15) 
Po) = Ed+i,d+i 

where the summation variables here and in what follows are always restricted to the values 
1 < (Y, f3 < d which correspond to the states of colour '1' and the now (d + 1) x (d + 1) 
matrices Ea,# are defined as above. The representation mahices for the BWM part (which is 
the part that involves colour '1' only) b*"'" and are given by the same expressions 
as the matrices b*I (equations (4.8) and (4.9)) and e (4.10), respectively, but of course they 
are now (d + x (d + 1)' matrices as well. The mixed braids b('.') and be,]) are 

and the mixed Temperley-Lieb operators have the form 

with 01' and iu defined as before. 
The above equations define a representation of the dilute BWM algebra with 

o(l) = k" 

(4.16) 

(4.17) 

(4.18) 
.. 

0 -  @ ) - & E = l  

Correspondingly, we obtain a representation of the Yang-Baxter algebra via equations (4.3) 
or (4.5) with U = k and r = k" and thereby have a solvable vertex model with 2n + 2 states. 

vertex models which play a somewhat As it turns out, these models are just the 
singular role in [19] as they are the only series of R matrices which do not commute at 
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one place. This means that in general [&U), E(")] # 0 which already implies that the 
Yang-Baxter operator cannot be written as a polynomial in a braid operator alone. The 
expression obtained here (choosing &l = = 1 in equations (4.3) or (4.5)) is related to 
i ( x )  = P R ( x )  of [I91 (with x = z, = k" = 5 )  by an orthogonal transformation with the 
matrix S 8 S where S = S1 . S, and 

In other words, the additional colour-'2' state corresponds in Jimbo's basis [19] to the 
asymmetric combination of states n + 1 and n + 2. In particular, the projectors onto the 
two colours are not diagonal in that basis. 

5. Summary and outlook 

A 'dilute' Birman-Wenzl-Murakami algebra has been defined as a generalization of the 
well known BWM algebra [6,7]. This was done following the general ideas of [9J on multi- 
colour braid-monoid algebras. Similar to the Binnan-Wed-Murakami case, the dilute 
algebra can be Baxterized to a solution of the Yang-Baxter algebra. This means that every 
appropriate matrix representation of the dilute algebra defines a solvable lattice model. 

As an example, the representation of the BWM algebra which corresponds to the E,? 
vertex models was considered explicitly and was enlarged to a representation of the dilute 
algebra. It turned out that the solvable vertex models obtained from this representation are 
the D,!Yl vertex models, the R matrix differing from that of [19J only by a simple similarity 
transformation. 

There are a number of questions raised by the results of this paper. 
The first, of course, is about the nature of the 'second' series of solutions related to the 

C,? representations of the BWM algebra (see the last paragraph of section 2). It appears 
that these correspond to another series of AZ-l models, the two series of AE)-l models 
being related to different realizations of the twisted &ne Lie algebra (compare the 
comments in 1221 at the end of section 1). These models are discussed in more detail in 
WI. 

Another question concerns face models related to the DiY1 vertex models. The result 
of section 4 means that one can construct such models (at least with trigonometric weights) 
on the basis of the known 23:') models [26], in a similar way as the dilute A-D-E models 
[ IO-12.91 are related to the 'usual' (i.e. nondilute) A-D-E models (see [27] and references 
therein). To do this, one has to find a dilute extension of the corresponding representations 
of the braid-monoid algebra As in the case of the dilute A-D-E models [ 111, one might 
expect that these models can be extended away from criticality to yield interesting elliptic 
solutions to the Yang-Baxter equation. This will be the subject of a future publication [28]. 

Equations (4.3) or (4.5) give a solution of the Yang-Baxter equation for any 
representation of the dilute B W M  algebra But if one has a representation of the BWM 
algebra itself it appears to be quite straightlorward to generalize it to the dilute case. This 
can be seen in the example of the Dfjl models in section 4 which can be constructed staning 
from the BWM representation provided by the 23;') models. On the other hand, we had three 
such series in section 2, the other two being related to the C,? and DAI) models. Apparently, 
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these will also give rise to corresponding series of dilute models which at first glance do 
not seem to fit into the list of known solvable models. But even if they in fact are related 
to known models (for instance, by a gauge transformation) these expressions might still be 
of use. It is plausible that-as it happens in other cases (for example, for the A$*) models 
[22, 10, 111, see also 112, 29])-there exist several series of non-equivalent solvable face 
models which are related to the vertex model R matrix in different gauges. These questions 
are currently being investigated and the results will be presented in forthcoming publications 
130, 25, 281. 
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