1,742 research outputs found
(13)C NMR investigation of the superconductor MgCNi_3 up to 800K
We report (13)C NMR characterization of the new superconductor MgCNi_3 (He et
al., Nature (411), 54 (2001)). We found that both the uniform spin
susceptibility and the spin fluctuations show a strong enhancement with
decreasing temperature, and saturate below ~50K and ~20K respectively. The
nuclear spin-lattice relaxation rate 1/(13)T_1T exhibits typical behaviour for
isotropic s-wave superconductivity with a coherence peak below Tc=7.0K that
grows with decreasing magnetic field.Comment: Accepted for publication in Physical Review Letter
Insights on star formation histories and physical properties of Herschel-detected galaxies
We test the impact of using variable star forming histories (SFHs) and the
use of the IR luminosity (LIR) as a constrain on the physical parameters of
high redshift dusty star-forming galaxies. We explore in particular the stellar
properties of galaxies in relation with their location on the SFR-M* diagram.
We perform SED fitting of the UV-NIR and FIR emissions of a large sample of
GOODS-Herschel galaxies, for which rich multi-wavelength observations are
available. We test different SFHs and imposing energy conservation in the SED
fitting process, to face issues like the age-extinction degeneracy and produce
SEDs consistent with observations. Our models work well for the majority of the
sample, with the notable exception of the high LIR end, for which we have
indications that our simple energy conservation approach cannot hold true. We
find trends in the SFHs fitting our sources depending on stellar mass M* and z.
Trends also emerge in the characteristic timescales of the SED models depending
on the location on the SFR-M* diagram. We show that whilst using the same
available observational data, we can produce galaxies less star-forming than
usually inferred, if we allow declining SFHs, while properly reproducing their
observables. These sources can be post-starbursts undergoing quenching, and
their SFRs are potentially overestimated if inferred from their LIR. Fitting
without the IR constrain leads to a strong preference for declining SFHs, while
its inclusion increases the preference of rising SFHs, more so at high z, in
tentative agreement with the cosmic star formation history. Keeping in mind
that the sample is biased towards high LIR, the evolution shaped by our model
appears as both bursty (initially) and steady-lasting (later on). The global
SFH of the sample follows the cosmic SFH with a small scatter, and is
compatible with the "downsizing" scenario of galaxy evolution.Comment: 28 pages, 26 figures, one appendix, Accepted for publication in
Astronomy & Astrophysic
Thermal expansion and effect of pressure on superconductivity in CuxTiSe2
We report measurements of thermal expansion on a number of polycrystalline
CuxTiSe2 samples corresponding to the parts of x - T phase diagram with
different ground states, as well as the pressure dependence of the
superconducting transition temperature for samples with three different values
of Cu-doping. Thermal expansion data suggest that the x - T phase diagram may
be more complex than initially reported. T_c data at elevated pressure can be
scaled to the ambient pressure CuxTiSe2 phase diagram, however, significantly
different scaling factors are needed to accommodate the literature data on the
charge density wave transition suppression under pressure
On the energy saved by interlayer interactions in the superconducting state of cuprates
A Ginzburg-Landau-like functional is proposed reproducing the main low-energy
features of various possible high-Tc superconducting mechanisms involving
energy savings due to interlayer interactions. The functional may be used to
relate these savings to experimental quantities. Two examples are given,
involving the mean-field specific heat jump at Tc and the superconducting
fluctuations above Tc. Comparison with existing data suggests, e.g., that the
increase of Tc due to the so-called interlayer tunneling (ILT) mechanism of
interlayer kinetic-energy savings is negligible in optimally-doped Bi-2212.Comment: 12 pages, no figures. Version history: 21-aug-2003, first version
(available on http://arxiv.org/abs/cond-mat/0308423v1); 15-jan-2004, update
to match Europhys. Lett. publication (minor grammar changes, updates in
bibliography - e.g., refs. 5 and 26
Field-Tuning of the electron and hole populations in the ruthenate Bi_3Ru_3O_11
Experiments on the Hall coefficient R_H and heat capactity C reveal an
unusual, compensated electronic ground state in the ruthenate Bi_3Ru_3O_11. At
low temperature T, R_H decreases linearly with magnetic field |H| for fields
larger than the field scale set by the Zeeman energy. The results suggest that
the electron and hole populations are tuned by H in opposite directions via
coupling of the spins to the field. As T is decreased below 5 K, the curve
C(T)/T vs. T^2 shows an anomalous flattening consistent with a rapidly growing
Sommerfeld parameter \gamma(T). We discuss shifts of the electron and hole
chemical potentials by H to interpret the observed behavior of R_H.Comment: 5 pages, 6 figures, reference adde
Heat capacity anomaly at the quantum critical point of the Transverse Ising Magnet CoNb_2O_6
The transverse Ising magnet Hamiltonian describing the Ising chain in a
transverse magnetic field is the archetypal example of a system that undergoes
a transition at a quantum critical point (QCP). The columbite CoNbO is
the closest realization of the transverse Ising magnet found to date. At low
temperatures, neutron diffraction has observed a set of discrete collective
spin modes near the QCP. We ask if there are low-lying spin excitations
distinct from these relatively high energy modes. Using the heat capacity, we
show that a significant band of gapless spin excitations exists. At the QCP,
their spin entropy rises to a prominent peak that accounts for 30 of the
total spin degrees of freedom. In a narrow field interval below the QCP, the
gapless excitations display a fermion-like, temperature-linear heat capacity
below 1 K. These novel gapless modes are the main spin excitations
participating in, and affected, by the quantum transition.Comment: 14 pages total, 8 figure
The suppression of superconductivity in MgCNi3 by Ni-site doping
The effects of partial substitution of Cu and Co for Ni in the intermetallic
perovskite superconductor MgCNi3 are reported. Calculation of the expected
electronic density of states suggests that electron (Cu) and hole (Co) doping
should have different effects. For MgCNi3-xCux, solubility of Cu is limited to
approximately 3% (x = 0.1), and Tc decreases systematically from 7K to 6K. For
MgCNi3-xCox, solubility of Co is much more extensive, but bulk
superconductivity disappears for Co doping of 1% (x = 0.03). No signature of
long range magnetic ordering is observed in the magnetic susceptibility of the
Co doped material.Comment: submitted, Solid State Communication
KMOS LENsing Survey (KLENS) : morpho-kinematic analysis of star-forming galaxies at
We present results from the KMOS lensing survey-KLENS which is exploiting
gravitational lensing to study the kinematics of 24 star forming galaxies at
with a median mass of and median
star formation rate (SFR) of . We find that 25% of
these low-mass/low-SFR galaxies are rotation dominated, while the majority of
our sample shows no velocity gradient. When combining our data with other
surveys, we find that the fraction of rotation dominated galaxies increases
with the stellar mass, and decreases for galaxies with a positive offset from
the main sequence. We also investigate the evolution of the intrinsic velocity
dispersion, , as a function of the redshift, , and stellar mass,
, assuming galaxies in quasi-equilibrium (Toomre Q parameter equal
to 1). From the relation, we find that the redshift evolution of
the velocity dispersion is mostly expected for massive galaxies (). We derive a relation, using
the Tully-Fisher relation, which highlights that a different evolution of the
velocity dispersion is expected depending on the stellar mass, with lower
velocity dispersions for lower masses, and an increase for higher masses,
stronger at higher redshift. The observed velocity dispersions from this work
and from comparison samples spanning appear to follow this relation,
except at higher redshift (), where we observe higher velocity dispersions
for low masses () and lower velocity
dispersions for high masses () than
expected. This discrepancy could, for instance, suggest that galaxies at
high- do not satisfy the stability criterion, or that the adopted
parametrisation of the specific star formation rate and molecular properties
fail at high redshift.Comment: Accepted for publication in A&A, 21 pages, 10 figure
- …