5,352 research outputs found

    OUR VANISHING LAKESHORE BY RECLAMATION

    Get PDF
    Continual reclamation of water surface has been carried out in Japan for a term of five hundred years. It has caused the shore environment a lot of damage. Reclamation policy became more systematic and efficient especially in modern times, and therefore, our waterfront environment is vanishing rapidly. People and authorities are awaring of it's seriousness now and make every effort to recover shoreline environment including Lake Suwa.Article信州大学理学部付属諏訪臨湖実験所報告 7: 143-148(1991)departmental bulletin pape

    Solving the Master Equation for Extremely Long Time Scale Calculations

    Full text link
    The dynamics of magnetic reversal process plays an important role in the design of the magnetic recording devices in the long time scale limit. In addition to long time scale, microscopic effects such as the entropic effect become important in magnetic nano-scale systems. Many advanced simulation methods have been developed, but few have the ability to simulate the long time scale limit and to accurately model the microscopic effects of nano-scale systems at the same time. We develop a new Monte Carlo method for calculating the dynamics of magnetic reversal at arbitrary long time. For example, actual calculations were performed up to 1e50 Monte Carlo steps. This method is based on microscopic interactions of many constituents and the master equation for magnetic probability distribution function is solved symbolically.Comment: accepted for publication in Computer Physics and Communication

    Random template banks and relaxed lattice coverings

    Full text link
    Template-based searches for gravitational waves are often limited by the computational cost associated with searching large parameter spaces. The study of efficient template banks, in the sense of using the smallest number of templates, is therefore of great practical interest. The "traditional" approach to template-bank construction requires every point in parameter space to be covered by at least one template, which rapidly becomes inefficient at higher dimensions. Here we study an alternative approach, where any point in parameter space is covered only with a given probability < 1. We find that by giving up complete coverage in this way, large reductions in the number of templates are possible, especially at higher dimensions. The prime examples studied here are "random template banks", in which templates are placed randomly with uniform probability over the parameter space. In addition to its obvious simplicity, this method turns out to be surprisingly efficient. We analyze the statistical properties of such random template banks, and compare their efficiency to traditional lattice coverings. We further study "relaxed" lattice coverings (using Zn and An* lattices), which similarly cover any signal location only with probability < 1. The relaxed An* lattice is found to yield the most efficient template banks at low dimensions (n < 10), while random template banks increasingly outperform any other method at higher dimensions.Comment: 13 pages, 10 figures, submitted to PR

    ON THE LOW-TEMPERATURE ORDERING OF THE 3D ATIFERROMAGNETIC THREE-STATE POTTS MODEL

    Full text link
    The antiferromagnetic three-state Potts model on the simple-cubic lattice is studied using Monte Carlo simulations. The ordering in a medium temperature range below the critical point is investigated in detail. Two different regimes have been observed: The so-called broken sublattice-symmetry phase dominates at sufficiently low temperatures, while the phase just below the critical point is characterized by an effectively continuous order parameter and by a fully restored rotational symmetry. However, the later phase is not the permutationally sublattice symmetric phase recently predicted by the cluster variation method.Comment: 20 pages with 9 figures in a single postscript file (compressed and uuencoded by uufiles -gz -9) plus two big figures in postscript file

    Stability of critical bubble in stretched fluid of square-gradient density-functional model with triple-parabolic free energy

    Full text link
    The square-gradient density-functional model with triple-parabolic free energy, that was used previously to study the homogeneous bubble nucleation [J. Chem. Phys. 129, 104508 (2008)], is used to study the stability of the critical bubble nucleated within the bulk under-saturated stretched fluid. The stability of the bubble is studied by solving the Schr\"odinger equation for the fluctuation. The negative eigenvalue corresponds to the unstable growing mode of the fluctuation. Our results show that there is only one negative eigenvalue whose eigenfunction represents the fluctuation that corresponds to the isotropically growing or shrinking nucleus. In particular, this negative eigenvalue survives up to the spinodal point. Therefore the critical bubble is not fractal or ramified near the spinodal.Comment: 9 pages, 8 figures, Journal of Chemical Physics accepted for publicatio

    The Hilbert Action in Regge Calculus

    Get PDF
    The Hilbert action is derived for a simplicial geometry. I recover the usual Regge calculus action by way of a decomposition of the simplicial geometry into 4-dimensional cells defined by the simplicial (Delaunay) lattice as well as its dual (Voronoi) lattice. Within the simplicial geometry, the Riemann scalar curvature, the proper 4-volume, and hence, the Regge action is shown to be exact, in the sense that the definition of the action does not require one to introduce an averaging procedure, or a sequence of continuum metrics which were common in all previous derivations. It appears that the unity of these two dual lattice geometries is a salient feature of Regge calculus.Comment: 6 pages, Plain TeX, no figure

    Important role of the spin-orbit interaction in forming the 1/2^+ orbital structure in Be isotopes

    Get PDF
    The structure of the second 0^+ state of ^{10}Be is investigated using a microscopic α+α+n+n\alpha+\alpha+n+n model based on the molecular-orbit (MO) model. The second 0^+ state, which has dominantly the (1/2^+)^2 configuration, is shown to have a particularly enlarged αα\alpha-\alpha structure. The kinetic energy of the two valence neutrons occupying along the αα\alpha-\alpha axis is reduced remarkably due to the strong α\alpha clustering and, simultaneously, the spin-orbit interaction unexpectedly plays important role to make the energy of this state much lower. The mixing of states with different spin structure is shown to be important in negative-parity states. The experimentally observed small-level spacing between 1^- and 2^- (~ 300 keV) is found to be an evidence of this spin-mixing effect. ^{12}{Be} is also investigated using α+α+4n\alpha+\alpha+4n model, in which four valence neutrons are considered to occupy the (3/2^-)^2(1/2^+)^2 configuration. The energy surface of ^{12}Be is shown to exhibit similar characteristics, that the remarkable α\alpha clustering and the contribution of the spin-orbit interaction make the binding of the state with (3/2^-)^2(1/2^+)^2 configuration properly stronger in comparison with the closed p-shell (3/2^-)^2(1/2^-)^2 configuration.Comment: 14 pages, 4 figure
    corecore