5,352 research outputs found
OUR VANISHING LAKESHORE BY RECLAMATION
Continual reclamation of water surface has been carried out in Japan for a term of five hundred years. It has caused the shore environment a lot of damage. Reclamation policy became more systematic and efficient especially in modern times, and therefore, our waterfront environment is vanishing rapidly. People and authorities are awaring of it's seriousness now and make every effort to recover shoreline environment including Lake Suwa.Article信州大学理学部付属諏訪臨湖実験所報告 7: 143-148(1991)departmental bulletin pape
Solving the Master Equation for Extremely Long Time Scale Calculations
The dynamics of magnetic reversal process plays an important role in the
design of the magnetic recording devices in the long time scale limit. In
addition to long time scale, microscopic effects such as the entropic effect
become important in magnetic nano-scale systems. Many advanced simulation
methods have been developed, but few have the ability to simulate the long time
scale limit and to accurately model the microscopic effects of nano-scale
systems at the same time. We develop a new Monte Carlo method for calculating
the dynamics of magnetic reversal at arbitrary long time. For example, actual
calculations were performed up to 1e50 Monte Carlo steps. This method is based
on microscopic interactions of many constituents and the master equation for
magnetic probability distribution function is solved symbolically.Comment: accepted for publication in Computer Physics and Communication
Random template banks and relaxed lattice coverings
Template-based searches for gravitational waves are often limited by the
computational cost associated with searching large parameter spaces. The study
of efficient template banks, in the sense of using the smallest number of
templates, is therefore of great practical interest. The "traditional" approach
to template-bank construction requires every point in parameter space to be
covered by at least one template, which rapidly becomes inefficient at higher
dimensions. Here we study an alternative approach, where any point in parameter
space is covered only with a given probability < 1. We find that by giving up
complete coverage in this way, large reductions in the number of templates are
possible, especially at higher dimensions. The prime examples studied here are
"random template banks", in which templates are placed randomly with uniform
probability over the parameter space. In addition to its obvious simplicity,
this method turns out to be surprisingly efficient. We analyze the statistical
properties of such random template banks, and compare their efficiency to
traditional lattice coverings. We further study "relaxed" lattice coverings
(using Zn and An* lattices), which similarly cover any signal location only
with probability < 1. The relaxed An* lattice is found to yield the most
efficient template banks at low dimensions (n < 10), while random template
banks increasingly outperform any other method at higher dimensions.Comment: 13 pages, 10 figures, submitted to PR
ON THE LOW-TEMPERATURE ORDERING OF THE 3D ATIFERROMAGNETIC THREE-STATE POTTS MODEL
The antiferromagnetic three-state Potts model on the simple-cubic lattice is
studied using Monte Carlo simulations. The ordering in a medium temperature
range below the critical point is investigated in detail. Two different regimes
have been observed: The so-called broken sublattice-symmetry phase dominates at
sufficiently low temperatures, while the phase just below the critical point is
characterized by an effectively continuous order parameter and by a fully
restored rotational symmetry. However, the later phase is not the
permutationally sublattice symmetric phase recently predicted by the cluster
variation method.Comment: 20 pages with 9 figures in a single postscript file (compressed and
uuencoded by uufiles -gz -9) plus two big figures in postscript file
Stability of critical bubble in stretched fluid of square-gradient density-functional model with triple-parabolic free energy
The square-gradient density-functional model with triple-parabolic free
energy, that was used previously to study the homogeneous bubble nucleation [J.
Chem. Phys. 129, 104508 (2008)], is used to study the stability of the critical
bubble nucleated within the bulk under-saturated stretched fluid. The stability
of the bubble is studied by solving the Schr\"odinger equation for the
fluctuation. The negative eigenvalue corresponds to the unstable growing mode
of the fluctuation. Our results show that there is only one negative eigenvalue
whose eigenfunction represents the fluctuation that corresponds to the
isotropically growing or shrinking nucleus. In particular, this negative
eigenvalue survives up to the spinodal point. Therefore the critical bubble is
not fractal or ramified near the spinodal.Comment: 9 pages, 8 figures, Journal of Chemical Physics accepted for
publicatio
The Hilbert Action in Regge Calculus
The Hilbert action is derived for a simplicial geometry. I recover the usual
Regge calculus action by way of a decomposition of the simplicial geometry into
4-dimensional cells defined by the simplicial (Delaunay) lattice as well as its
dual (Voronoi) lattice. Within the simplicial geometry, the Riemann scalar
curvature, the proper 4-volume, and hence, the Regge action is shown to be
exact, in the sense that the definition of the action does not require one to
introduce an averaging procedure, or a sequence of continuum metrics which were
common in all previous derivations. It appears that the unity of these two dual
lattice geometries is a salient feature of Regge calculus.Comment: 6 pages, Plain TeX, no figure
Important role of the spin-orbit interaction in forming the 1/2^+ orbital structure in Be isotopes
The structure of the second 0^+ state of ^{10}Be is investigated using a
microscopic model based on the molecular-orbit (MO) model.
The second 0^+ state, which has dominantly the (1/2^+)^2 configuration, is
shown to have a particularly enlarged structure. The kinetic
energy of the two valence neutrons occupying along the axis is
reduced remarkably due to the strong clustering and, simultaneously,
the spin-orbit interaction unexpectedly plays important role to make the energy
of this state much lower. The mixing of states with different spin structure is
shown to be important in negative-parity states. The experimentally observed
small-level spacing between 1^- and 2^- (~ 300 keV) is found to be an evidence
of this spin-mixing effect. ^{12}{Be} is also investigated using
model, in which four valence neutrons are considered to
occupy the (3/2^-)^2(1/2^+)^2 configuration. The energy surface of ^{12}Be is
shown to exhibit similar characteristics, that the remarkable
clustering and the contribution of the spin-orbit interaction make the binding
of the state with (3/2^-)^2(1/2^+)^2 configuration properly stronger in
comparison with the closed p-shell (3/2^-)^2(1/2^-)^2 configuration.Comment: 14 pages, 4 figure
- …