1,845 research outputs found
Field-Induced Quasiparticle Excitation in Ca(AlSi): Evidence for unconventional Superconductivity
The temperature () and magnetic field () dependence of the magnetic
penetration depth, , in Ca(AlSi) exhibits
significant deviation from that expected for conventional BCS superconductors.
In particular, it is inferred from a field dependence of () at 2.0 K that the quasiparticle excitation is strongly enhanced by the
Doppler shift. This suggests that the superconducting order parameter in
Ca(AlSi) is characterized by a small energy scale
K originating either from anisotropy or multi-gap
structure.Comment: 4 pages, 4 figures, submitted to J. Phys. Soc. Jp
High spectral resolution observations of HNC3 and HCCNC in the L1544 prestellar core
HCCNC and HNC3 are less commonly found isomers of cyanoacetylene, HC3N, a
molecule that is widely found in diverse astronomical sources. We want to know
if HNC3 is present in sources other than the dark cloud TMC-1 and how its
abundance is relative to that of related molecules. We used the ASAI unbiased
spectral survey at IRAM 30m towards the prototypical prestellar core L1544 to
search for HNC3 and HCCNC which are by-product of the HC3NH+ recombination,
previously detected in this source. We performed a combined analysis of
published HNC3 microwave rest frequencies with thus far unpublished millimeter
data because of issues with available rest frequency predictions. We determined
new spectroscopic parameters for HNC3, produced new predictions and detected it
towards L1544. We used a gas-grain chemical modelling to predict the abundances
of N-species and compare with the observations. The modelled abundances are
consistent with the observations, considering a late stage of the evolution of
the prestellar core. However the calculated abundance of HNC3 was found 5-10
times higher than the observed one. The HC3N, HNC3 and HCCNC versus HC3NH+
ratios are compared in the TMC-1 dark cloud and the L1544 prestellar core.Comment: Accepted in MNRAS letters. 5 pages plus 2 additional pages for the
on-line materia
Recommended from our members
New detections of isotopic molecular absorption lines: a low <sup>12</sup>C:<sup>13</sup>C ratio in nearby gas
Molecular absorption line observations towards the background source Sgr B2 `M' are presented. Previous observations have shown that there are ~9 foreground clouds of moderate density along this line of sight, which produce absorption lines that are well spaced in velocity. In two of these clouds, first detections have now been made of the rare isotopomers 12CS, HN13C, HC15N and HC18O+. For a feature at lsr velocities of -4 to +18km s-1, the isotopic ratio 12C:13C has been estimated, from the relative intensities of 12CS and 13CS J=1-0 lines, and also by comparing the strength of the 13CS line with that of C34S J=1-0 observed previously. A convergent solution for the two methods is found if 12CS is optically thick but the isotopomer lines are optically thin. In this case 12C:13C is 24±11, which is surprisingly low if the gas lies near the Sun, as indicated by its velocity. However, it has been suggested that parts of this feature may in fact arise in hot gas close to the Sgr B2 cloud, where a low isotope ratio is expected. If this region of the line is excluded, the 12C:13C ratio for the remaining lsr velocities of +11 to +18kms-1 is only slightly changed, with a value of 22±13. This is the true carbon isotope ratio in some nearby gas, if effects such as peculiar velocities and isotopic fractionation are unimportant. The value found here is well below the local average of ~60-70 in the solar neighbourhood, which suggests that some of the nearby absorbing gas has been recently isotopically enriched by stellar ejecta. This moderate density absorbing gas is then more likely to be material left over after star-formation, rather than a pre-star-for
B12Hn and B12Fn: planar vs icosahedral structures
Using density functional theory and quantum Monte Carlo calculations, we show that B12Hn and B12Fn (n = 0 to 4) quasi-planar structures are energetically more favorable than the corresponding icosahedral clusters. Moreover, we show that the fully planar B12F6 cluster is more stable than the three-dimensional counterpart. These results open up the possibility of designing larger boron-based nanostructures starting from quasi-planar or fully planar building blocks
Trends in Molecular Emission from Different Extragalactic Stellar Initial Mass Functions
Banerji et al. (2009) suggested that top-heavy stellar Initial Mass Functions
(IMFs) in galaxies may arise when the interstellar physical conditions inhibit
low-mass star formation, and they determined the physical conditions under
which this suppression may or may not occur. In this work, we explore the
sensitivity of the chemistry of interstellar gas under a wide range of
conditions. We use these results to predict the relative velocity-integrated
antenna temperatures of the CO rotational spectrum for several models of high
redshift active galaxies which may produce both top-heavy and unbiased IMFs. We
find that while active galaxies with solar metallicity (and top-heavy IMFs)
produce higher antenna temperatures than those with sub-solar metallicity (and
unbiased IMFs) the actual rotational distribution is similar. The high-J to
peak CO ratio however may be used to roughly infer the metallicity of a galaxy
provided we know whether it is active or quiescent. The metallicity strongly
influences the shape of the IMF. High order CO transitions are also found to
provide a good diagnostic for high far-UV intensity and low metallicity
counterparts of Milky Way type systems both of which show some evidence for
having top-heavy IMFs. We also compute the relative abundances of molecules
known to be effective tracers of high density gas in these galaxy models. We
find that the molecules CO and CS may be used to distinguish between solar and
sub-solar metallicity in active galaxies at high redshift whereas HCN, HNC and
CN are found to be relatively insensitive to the IMF shape at the large visual
magnitudes typically associated with extragalactic sources.Comment: 26 Pages, 8 Figures, Accepted for publication in Ap
- …