2,354 research outputs found

    High order variational integrators in the optimal control of mechanical systems

    Get PDF
    In recent years, much effort in designing numerical methods for the simulation and optimization of mechanical systems has been put into schemes which are structure preserving. One particular class are variational integrators which are momentum preserving and symplectic. In this article, we develop two high order variational integrators which distinguish themselves in the dimension of the underling space of approximation and we investigate their application to finite-dimensional optimal control problems posed with mechanical systems. The convergence of state and control variables of the approximated problem is shown. Furthermore, by analyzing the adjoint systems of the optimal control problem and its discretized counterpart, we prove that, for these particular integrators, dualization and discretization commute.Comment: 25 pages, 9 figures, 1 table, submitted to DCDS-

    Improving optimal control of grid-connected lithium-ion batteries through more accurate battery and degradation modelling

    Full text link
    The increased deployment of intermittent renewable energy generators opens up opportunities for grid-connected energy storage. Batteries offer significant flexibility but are relatively expensive at present. Battery lifetime is a key factor in the business case, and it depends on usage, but most techno-economic analyses do not account for this. For the first time, this paper quantifies the annual benefits of grid-connected batteries including realistic physical dynamics and nonlinear electrochemical degradation. Three lithium-ion battery models of increasing realism are formulated, and the predicted degradation of each is compared with a large-scale experimental degradation data set (Mat4Bat). A respective improvement in RMS capacity prediction error from 11\% to 5\% is found by increasing the model accuracy. The three models are then used within an optimal control algorithm to perform price arbitrage over one year, including degradation. Results show that the revenue can be increased substantially while degradation can be reduced by using more realistic models. The estimated best case profit using a sophisticated model is a 175% improvement compared with the simplest model. This illustrates that using a simplistic battery model in a techno-economic assessment of grid-connected batteries might substantially underestimate the business case and lead to erroneous conclusions

    The effect of a nucleating agent on lamellar growth in melt-crystallizing polyethylene oxide

    Full text link
    The effects of a (non co-crystallizing) nucleating agent on secondary nucleation rate and final lamellar thickness in isothermally melt-crystallizing polyethylene oxide are considered. SAXS reveals that lamellae formed in nucleated samples are thinner than in the pure samples crystallized at the same undercoolings. These results are in quantitative agreement with growth rate data obtained by calorimetry, and are interpreted as the effect of a local decrease of the basal surface tension, determined mainly by the nucleant molecules diffused out of the regions being about to crystallize. Quantitative agreement with a simple lattice model allows for some interpretation of the mechanism.Comment: submitted to Journal of Applied Physics (first version on 22 Apr 2002

    Criterion for purely elastic Taylor-Couette instability in the flows of shear-banding fluids

    Get PDF
    In the past twenty years, shear-banding flows have been probed by various techniques, such as rheometry, velocimetry and flow birefringence. In micellar solutions, many of the data collected exhibit unexplained spatio-temporal fluctuations. Recently, it has been suggested that those fluctuations originate from a purely elastic instability of the flow. In cylindrical Couette geometry, the instability is reminiscent of the Taylor-like instability observed in viscoelastic polymer solutions. In this letter, we describe how the criterion for purely elastic Taylor-Couette instability should be adapted to shear-banding flows. We derive three categories of shear-banding flows with curved streamlines, depending on their stability.Comment: 6 pages, 3 figure

    Potential "ways of thinking" about the shear-banding phenomenon

    Get PDF
    Shear-banding is a curious but ubiquitous phenomenon occurring in soft matter. The phenomenological similarities between the shear-banding transition and phase transitions has pushed some researchers to adopt a 'thermodynamical' approach, in opposition to the more classical 'mechanical' approach to fluid flows. In this heuristic review, we describe why the apparent dichotomy between those approaches has slowly faded away over the years. To support our discussion, we give an overview of different interpretations of a single equation, the diffusive Johnson-Segalman (dJS) equation, in the context of shear-banding. We restrict ourselves to dJS, but we show that the equation can be written in various equivalent forms usually associated with opposite approaches. We first review briefly the origin of the dJS model and its initial rheological interpretation in the context of shear-banding. Then we describe the analogy between dJS and reaction-diffusion equations. In the case of anisotropic diffusion, we show how the dJS governing equations for steady shear flow are analogous to the equations of the dynamics of a particle in a quartic potential. Going beyond the existing literature, we then draw on the Lagrangian formalism to describe how the boundary conditions can have a key impact on the banding state. Finally, we reinterpret the dJS equation again and we show that a rigorous effective free energy can be constructed, in the spirit of early thermodynamic interpretations or in terms of more recent approaches exploiting the language of irreversible thermodynamics.Comment: 14 pages, 6 figures, tutorial revie

    Minkowski Functionals of Abell/ACO Clusters

    Get PDF
    We determine the Minkowski functionals for a sample of Abell/ACO clusters, 401 with measured and 16 with estimated redshifts. The four Minkowski functionals (including the void probability function and the mean genus) deliver a global description of the spatial distribution of clusters on scales from 1010 to 60\hMpc with a clear geometric interpretation. Comparisons with mock catalogues of N--body simulations using different variants of the CDM model demonstrate the discriminative power of the description. The standard CDM model and the model with tilted perturbation spectrum cannot generate the Minkowski functionals of the cluster data, while a model with a cosmological constant and a model with breaking of the scale invariance of perturbations (BSI) yield compatible results.Comment: 10 pages, 13 Postscript figures, uses epsf.sty and mn.sty (included), submitted to MNRA

    Higher Order Variational Integrators: a polynomial approach

    Get PDF
    We reconsider the variational derivation of symplectic partitioned Runge-Kutta schemes. Such type of variational integrators are of great importance since they integrate mechanical systems with high order accuracy while preserving the structural properties of these systems, like the symplectic form, the evolution of the momentum maps or the energy behaviour. Also they are easily applicable to optimal control problems based on mechanical systems as proposed in Ober-Bl\"obaum et al. [2011]. Following the same approach, we develop a family of variational integrators to which we refer as symplectic Galerkin schemes in contrast to symplectic partitioned Runge-Kutta. These two families of integrators are, in principle and by construction, different one from the other. Furthermore, the symplectic Galerkin family can as easily be applied in optimal control problems, for which Campos et al. [2012b] is a particular case.Comment: 12 pages, 1 table, 23rd Congress on Differential Equations and Applications, CEDYA 201

    Pricing of South Dakota Hard Red Winter Wheat

    Get PDF
    • …
    corecore