305 research outputs found

    Conjunction study of plasmapause location using ground‐based magnetometers, IMAGE‐EUV, and Kaguya‐TEX data

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/94992/1/jgra20214.pd

    Geomagnetically induced current model validation from New Zealand's South Island

    Get PDF
    Geomagnetically induced currents (GICs) during a space weather event have previously caused transformer damage in New Zealand. During the 2015 St. Patrick's Day Storm, Transpower NZ Ltd has reliable GIC measurements at 23 different transformers across New Zealand's South Island. These observed GICs show large variability, spatially and within a substation. We compare these GICs with those calculated from a modeled geolectric field using a network model of the transmission network with industry‐provided line, earthing, and transformer resistances. We calculate the modeled geoelectric field from the spectra of magnetic field variations interpolated from measurements during this storm and ground conductance using a thin‐sheet model. Modeled and observed GIC spectra are similar, and coherence exceeds the 95% confidence threshold, for most valid frequencies at 18 of the 23 transformers. Sensitivity analysis shows that modeled GICs are most sensitive to variation in magnetic field input, followed by the variation in land conductivity. The assumption that transmission lines follow straight lines or getting the network resistances exactly right is less significant. Comparing modeled and measured GIC time series highlights that this modeling approach is useful for reconstructing the timing, duration, and relative magnitude of GIC peaks during sudden commencement and substorms. However, the model significantly underestimates the magnitude of these peaks, even for a transformer with good spectral match. This is because of the limited range of frequencies for which the thin‐sheet model is valid and severely limits the usefulness of this modeling approach for accurate prediction of peak GICs

    Self-field measurements of an HTS twisted stacked-tape cable conductor

    Get PDF
    For a twisted stacked-tape cable (TSTC) conductor composed of REBCO tapes, self-field measurements were conducted with Hall sensors. In the measurements, a 650 mm diameter single turn coil wound with the TSTC conductor, which was made with 48 REBCO tapes whose width was 6 mm, was utilized as a test sample. Based on the measurement results, the current distribution of the TSTC conductor was investigated with analytical models. The analytical results indicate the current distribution of the TSTC is uniform under the condition that the operating current is 10 kA and the sample temperature is approximately 30 K. On the other hand, the current distribution is not uniform at the excitation and the degauss of the TSTC conductor with the ramp rate of 50 A/s

    Telomere shortening occurs in Asian Indian Type 2 diabetic patients

    Get PDF
    Aim: Telomere shortening has been reported in several diseases including atherosclerosis and Type 1 diabetes. Asian Indians have an increased predilection for Type 2 diabetes and premature coronary artery disease. The aim of this study was to determine whether telomeric shortening occurs in Asian Indian Type 2 diabetic patients. Methods: Using Southern‐blot analysis we determined mean terminal restriction fragment (TRF) length, a measure of average telomere size, in leucocyte DNA. Type 2 diabetic patients without any diabetes‐related complications (n = 40) and age‐ and sex‐matched control non‐diabetic subjects (n = 40) were selected from the Chennai Urban Rural Epidemiology Study (CURES). Plasma level of malondialdehyde (MDA), a marker of lipid peroxidation, was measured by TBARS (thiobarbituric acid reactive substances) using a fluorescence method. Results: Mean (± SE) TRF lengths of the Type 2 diabetic patients (6.01 ± 0.2 kb) were significantly shorter than those of the control subjects (9.11 ± 0.6 kb) (P = 0.0001). Among the biochemical parameters, only levels of TBARS showed a negative correlation with shortened telomeres in the diabetic subjects (r = −0.36; P = 0.02). However, telomere lengths were negatively correlated with insulin resistance (HOMA‐IR) (r = −0.4; P = 0.01) and age (r = −0.3; P = 0.058) and positively correlated with HDL levels (r = 0.4; P = 0.01) in the control subjects. Multiple linear regression (MLR) analysis revealed diabetes to be significantly (P < 0.0001) associated with shortening of TRF lengths. Conclusions: Telomere shortening occurs in Asian Indian Type 2 diabetic patients

    Robust Non-Interactive Multiparty Computation Against Constant-Size Collusion

    Get PDF
    Non-Interactive Multiparty Computations (Beimel et al., Crypto 2014) is a very powerful notion equivalent (under some corruption model) to garbled circuits, Private Simultaneous Messages protocols, and obfuscation. We present robust solutions to the problem of Non-Interactive Multiparty Computation in the computational and information-theoretic models. Our results include the first efficient and robust protocols to compute any function in NC1NC^1 for constant-size collusions, in the information-theoretic setting and in the computational setting, to compute any function in PP for constant-size collusions, assuming the existence of one-way functions. Our constructions start from a Private Simultaneous Messages construction (Feige, Killian Naor, STOC 1994 and Ishai, Kushilevitz, ISTCS 1997) and transform it into a Non-Interactive Multiparty Computation for constant-size collusions. We also present a new Non-Interactive Multiparty Computation protocol for symmetric functions with significantly better communication complexity compared to the only known one of Beimel et al

    Uncovering Algebraic Structures in the MPC Landscape

    Get PDF
    A fundamental problem in the theory of secure multi-party computation (MPC) is to characterize functions with more than 2 parties which admit MPC protocols with information-theoretic security against passive corruption. This question has seen little progress since the work of Chor and Ishai (1996), which demonstrated difficulties in resolving it. In this work, we make significant progress towards resolving this question in the important case of aggregating functionalities, in which m parties P1, . . . , Pm hold inputs x1, . . . , xm and an aggregating party P0 must learn f(x1,...,xm). We uncover a rich class of algebraic structures that are closely related to secure computability, namely, “Commuting Permutations Systems” (CPS) and its variants. We present an extensive set of results relating these algebraic structures among themselves and to MPC, including new protocols, impossibility results and separations. Our results include a necessary algebraic condition and slightly stronger sufficient algebraic condition for a function to admit information-theoretically secure MPC protocols. We also introduce and study new models of minimally interactive MPC (called UNIMPC and UNIMPC*), which not only help in understanding our positive and negative results better, but also open up new avenues for studying the cryptographic complexity landscape of multi-party functionalities. Our positive results include novel protocols in these models, which may be of independent practical interest. Finally, we extend our results to a definition that requires UC security as well as semi-honest security (which we term strong security). In this model we are able to carry out the characterization of all computable functions, except for a gap in the case of aggregating functionalities
    corecore