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Abstract. Non-Interactive Multiparty Computations (Beimel et al.,
Crypto 2014) is a very powerful notion equivalent (under some cor-
ruption model) to garbled circuits, Private Simultaneous Messages pro-
tocols, and obfuscation. We present robust solutions to the problem
of Non-Interactive Multiparty Computation in the computational and
information-theoretic models. Our results include the first efficient and
robust protocols to compute any function in NC1 for constant-size col-
lusions, in the information-theoretic setting and in the computational
setting, to compute any function in P for constant-size collusions, assum-
ing the existence of one-way functions. Our constructions start from a
Private Simultaneous Messages construction (Feige, Killian Naor, STOC
1994 and Ishai, Kushilevitz, ISTCS 1997) and transform it into a Non-
Interactive Multiparty Computation for constant-size collusions.
We also present a new Non-Interactive Multiparty Computation pro-
tocol for symmetric functions with significantly better communication
complexity compared to the only known one of Beimel et al.

Keywords. Non-interactive multiparty computation, private simultane-
ous messages

1 Introduction

A non-interactive multiparty computation enables n parties P1, . . . , Pn, each
holding a private input, and a special party P0, called an evaluator, to compute
a joint function of the n parties’ inputs so that the evaluator learns the output.
The communication structure in this setting is that each party sends a single
message to the evaluator. This is a highly desired mode of interaction as the
required connectivity between the parties is extremely simple, yet it enables to
carry out natural computations such as voting and auctions.

Feige, Kilian, and Naor [4] were first to study such a model, referred to as
the Private Simultaneous Messages (PSM)1 model. They considered information-
theoretic security, namely, in a PSM protocol for a function f , the evaluator of
the function learns the output of the function on the parties’ inputs and nothing
else. Essential to their solutions was the assumption that the evaluator does not

1 Name given by Ishai and Kushilevitz [9].
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collude with any of the n parties. If such collusions were possible, even with a
single misbehaving party, their protocols would lose the privacy guarantee.

Beimel, Gabizon, Ishai, Kushilevitz, Meldgaard, and Paskin [3] generalized the
PSM model to what they call Non-Interactive Multiparty Computation (NIMPC),
by considering the possibility of collusions between parties and the evaluator.
In this setting the notion of security needs to be modified as clearly we cannot
prevent the evaluator from computing the function on all possible inputs of the
colluding parties. Thus, they define the notion of “best possible security” by
utilizing the residual function [8] for a set of colluding parties T . The residual
function of f is all the values f(y1, . . . , yn) where yi = xi if Pi /∈ T (xi being
the input of the non-colluding party Pi) and yi ∈ {0, 1} for Pi ∈ T . A secure
protocol would enable the adversary to learn the residual function and nothing
more. An NIMPC protocol that can withstand collusions of up to t parties is
called t-robust. If t = n the protocol is said to be fully robust.

Due to their very restricted communication pattern, both PSM and NIMPC
require some form of setup arrangement. PSM assumes a common random string
shared by the parties while NIMPC allows for a setup phase where parties are
provided with correlated randomness. The latter models an offline stage run
independently of the parties’ inputs with the actual computation of the function
happening in a later online phase.

We note that while the above notions were introduced in the information-
theoretic setting, they apply to the computational case as well. The notion of
NIMPC turns out to be extremely powerful both in the computational and
information-theoretic setting, and for a wide range of applications. It generalizes
such notions as obfuscation and garbling schemes, and is a weaker variant of
multi-input functional encryption. At the same time, in more practical settings,
NIMPC can be used for voting, auctions, or distributed computations on bulletin
boards.

The wide applicability of the NIMPC abstraction is also reflected in the wide
range of results (and open questions) for what is computable in this model. In
the information-theoretic setting, Feige et al. [4] show that any function can
be computed with exponential size messages sent from parties to evaluator. At
the same time, they show that any function in NC1 can be computed with
polynomial-size messages. Ishai and Kushilevitz [9] further expanded the class of
functions that can be computed by PSM protocols to log-space language classes
such as modpL and to log-space counting classes such as #L.

Not surprisingly, the NIMPC model proves to be more challenging, even for
restricted robustness. Beimel et al. [3] prove that some non-trivial functions can
be computed with information-theoretic security in this model. They showed that
the iterated product function f(x1, . . . , xn) = x1 · · ·xn over a group G can be
computed efficiently with a collusion of any size. In addition, for any function f ,
they exhibit a solution that can tolerate arbitrary collusions but is exponential
in the total bit-length of the inputs. Their strongest result shows that symmetric
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functions over a domain X1 × · · · ×Xn where each Xi is of constant-size admits a
t-robust NIMPC with polynomial complexity for constant t.

Can these information-theoretic NIMPC results be extended to a larger class,
e.g., NC1, as in the PSM case? A negative result follows from Goldwasser and
Rothblum [6] implicitly stating that the existence of an efficient protocol for NC1

that can tolerate a polynomial-size collusion (i.e., of size t = Ω(nα), with α > 0
being constant) in the information-theoretic setting would imply the collapse
of the polynomial-time hierarchy. This still leaves the possibility that robust
NIMPC with restricted, say constant-size, collusions are still possible for NC1.
Yet, Beimel et al. show evidence that even achieving 1-robustness, i.e., security
against a collusion of one party with the evaluator, may require a new technical
approach (they show that natural approaches to realize NIMPC based on known
PSM or garbling techniques fail even for t = 1). They leave this question open.

In the computational setting the situation is strikingly different. First of all,
in the PSM model or the equivalent 0-robust NIMPC, one can compute any
polynomial-time computable function with polynomial-size messages under the
sole assumption of the existence of one-way functions. Indeed, note that a Yao
garbled circuit is a 0-robust NIMPC. At the other end, fully-robust NIMPC
for any polynomial function can be constructed using multi-input functional
encryption which Goldwasser et al. [5] build on the basis of indistinguishability
obfuscation (iO) and one-way functions. Actually, the existence of efficient NIMPC
protocols for P that can tolerate a polynomial-size collusion implies iO.

The above results leave two wide gaps in our knowledge regarding the feasibility
of constructing robust NIMPC protocols. In the information-theoretic setting,
PSM exists for at least all of NC1 while NIMPC with non-zero robustness is
only known for a handful of simple functions [3]. In the computational setting,
one-way functions suffice for 0-robust NIMPC for all polynomial functions, and
under iO fully-robust NIMPC for all P is possible.
This raises two important questions:

1. Do information-theoretic robust NIMPC protocols exist, even for 1-robustness,
for a class of functions covered by PSM, e.g., NC1?

2. Do computational robust NIMPC protocols exist for P , with restricted
robustness, under weaker assumptions than iO?

These are open questions postulated in the work of Beimel et al. [3] and the ones
that we set to answer.

1.1 Our results

From PSM to NIMPC. Our main theorem shows an information-theoretic
transformation which takes any PSM (or 0-robust NIMPC) construction and
transforms it into a t-robust NIMPC protocol. The resultant protocol has com-
plexity that is, roughly, nO(t) times that of the given PSM protocol. Furthermore,
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if the original PSM relied on some assumptions the new protocol relies on the
same assumptions without needing to introduce any further assumptions.

This single theorem is extremely powerful and its corollaries give an affirmative
answer to the two questions raised above.

In the information-theoretic setting we have that for constant t, there exist
efficient t-robust protocols for the same class of functions for which efficient PSM
protocols exist, in particular for the whole class NC1 and the classes shown in [9],
namely, modpL and log-space counting classes such as #L.

In the computational setting, we achieve robust NIMPC solutions for constant-
size collusions for any polynomial-time function, solely based on one way functions.
That is, we narrow the gap between the PSM solutions based on one-way functions
that tolerate no collusions, and the solutions based on iO, that can tolerate any
number of collusions. Recall that robust NIMPC solutions for any polynomial-time
function, even for polynomial-size collusions, implies iO.

Design. The idea governing our result was to directly find a solution to the
problem identified by Beimel et al. [3, Section 6]. The essence of the problem
can be understood by considering a Yao garbled circuit. The circuit is set up
so that each input wire i has two possible labels m′i,0,m′i,1 one of which will be
used by party Pi to convey its input to the evaluator. The problem arises when
Pi colludes with the evaluator providing both labels for input wire i. One might
hope that this would only enable the evaluator to compute the residual function,
i.e., f(x1, . . . , xi−1, 0, xi+1, . . . , xn) and f(x1, . . . , xi−1, 1, xi+1, . . . , xn), which is
allowed. However, the above paper shows that in fact more is exposed via the
knowledge of both labels, thus violating the security of the computation. This
problem also arises in similar constructions based on Barrington theorem [2] and
Kilian randomization [12], or the Ishai-Kushilevitz protocol in [9].

The issue is that the adversary can learn two different labels m′i,0 and m′i,1
for the same input wire i, when Pi is colluding. If we could prevent it, this would
resolve the problem described above. Yet, this seems challenging as we need to
enable Pi to still have a message for a possible input of 0 and a message for a
possible input of 1, otherwise it will render the computation impossible. But
maybe this counter-intuitive approach can be achieved?

Given a function f , n parties, P1, . . . , Pn, holding inputs x1, . . . , xn (resp.), an
evaluator P0, and a PSM which computes the function we will do the following.
We duplicate the PSM a number of times (this number is a function of the
number of colluding parties; we denote it for now by κ), creating the copies
PSM1, . . . ,PSMκ. Each PSM will have a fresh set of labels for its input wires.
Concretely, PSMσ will have labels m′σ,i,0,m′σ,i,1 for i = {1, . . . , n}. On top of
these copies of the PSM we will put NIMPC protocols which we call selectors.
There will be n selectors Sel1, . . . ,Seln, one for each party. The input wires for
all the selectors will be labeled by mi,0,mi,1 for i = {1, . . . , n}. The selector Seli
is expected to output a label m′σ,i,xi

for exactly one index σ. Each selector will
have one output wire for a total of n output wires for all the selectors combined.
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Clearly, the adversary can still utilize both mi,0,mi,1 of a colluding party on
the input wires to the selectors. But the selectors will be sophisticated. Given
a specific set of labels for the inputs wires, they will provide a full set of labels
for only one of the copies of the PSM. Given a different set of input wire labels,
they will provide a full set of labels for a different PSM. So for the example
above, on input the set of labels m1,x1 , . . . ,mi−1,xi−1 ,mi,0,mi+1,xi+1 , . . . ,mn,xn

,
the adversary will receive the labels for PSMσ and on input the set of la-
bels m1,x1 , . . . ,mi−1,xi−1 ,mi,1, ,mi+1,xi+1 , . . . ,mn,xn

it will receive the labels for
PSMσ′ . Thus, effectively disarming the adversary from the ability to learn two
different labels for the same input of the same PSM. Note, that the adversary
can still run the selectors multiple times on different inputs, in fact, on 2t if there
are t colluding parties. But the selectors can “tolerate” such behavior without
violating the privacy of the inputs of the non-colluding parties.

Thus we have achieved that the combination of selectors Seli and κ copies
of the original PSM yield a t-robust NIMPC for the function computed by the
PSM. See Fig. 1.

Example for one colluding party. In the following, we give a flavor of the ideas
of our protocols in the specific case where only one party is colluding with the
evaluator. In this case we would need two copies of the PSM, PSM1 and PSM2
with labelsm′1,i,0,m′1,i,1 andm′2,i,0,m′2,i,1 (resp.) for the input wire corresponding
to party Pi. Thus, we want the selectors either to provide a full set of labels for
one or the other of the two PSMs.

We define Seli, the algorithm used by the evaluator to derive exactly one of
the labels m′1,i,xi

,m′2,i,xi
from the input labels m1,x1 , . . . ,mn,xn , as:

Seli(m1,x1 , . . . ,mn,xn
) =



m′1,i,0 if
∑n
j=1 xj = 0 mod 2 and xi = 0 ,

m′1,i,1 if
∑n
j=1 xj = 0 mod 2 and xi = 1 ,

m′2,i,0 if
∑n
j=1 xj = 1 mod 2 and xi = 0 ,

m′2,i,1 if
∑n
j=1 xj = 1 mod 2 and xi = 1 .

We assume that xi can be implicitly obtained from mi,xi
. Things will be made

more formal later.
Let us examine the output of the selector and see that it works properly.

W.l.o.g., assume that Pi is the colluding party and that the evaluator first uses
the message corresponding to an input of 0 for Pi and that this sets the sum
of all the parties’ inputs to 0. In this case the selector for all parties, colluding
or not, will output one of the values from the two top rows depending on the
party’s individual input. These are all labels for PSM1. Now, if the evaluator
flips the input value of the colluding party to be 1, this causes the sum of all the
parties’ inputs to flip to 1, resulting in the selector outputting a value from the
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m1,0

m1,1
· · · input labels · · ·

mn,0

mn,1

Sel1 · · · selectors · · · Seln

PSM1 PSMκ

PSMσ

m′
σ,1,0

m′
σ,1,1

· · · m′
σ,n,0

m′
σ,n,1

Given input labels m1,x1 , . . . ,mn,xn , the selectors choose an index σ and output the
labels m′σ,1,x1 , . . . ,m

′
σ,n,xn

for the instance PSMσ. For different input labels (that a
collusion of t users can obtain), a different index σ′ is chosen.

Fig. 1: NIMPC transformation

bottom two rows of the function. Those outputs are all labels of PSM2. Thus,
we manage to prevent the evaluator from learning two labels for the same input
of the same PSM.

NIMPC for symmetric functions. While our above result and also [3] provide
NIMPC protocols for symmetric functions (both of complexity nO(t)), here we
present a specialized solution that improves significantly the level of robustness
it can offer.

A symmetric Boolean function can be seen as a function of the sum of its inputs
over Zn+1. Our core idea is to start with an inefficient NIMPC solution based on
an information-theoretic implementation of Yao’s garbling and then improve its
complexity via a “divide-and-conquer” approach that uses the Chinese remainder
theorem to create small instances of the problem. The NIMPC protocols on
these smaller instances provide much stronger collusion resistance. Using this
technique we show that there exists an information-theoretic t-robust NIMPC for
symmetric Boolean functions with communication complexity nlog logn+log t+O(1),
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improving significantly on the best prior protocol in [3, Theorem 4.17] that has
communication complexity

(
n
t

)
·O(2t · n4).

1.2 Related Work

Halevi, Lindell, and Pinkas [8] wanted to avoid the need for a fresh common or
correlated randomness string for each execution. However, their model requires
the parties to sequentially interact with the evaluator. They provide solutions for
very specific patterns of interaction, assuming a public-key infrastructure (PKI).

Halevi et al. [7] expand the graphs of interaction patterns that can be handled
in [8] to directed graphs, chains, and star. They examine which functions can be
computed under these communication patterns and show that any interaction
pattern can be reduced via an information theoretic protocol to a star, while
providing the best possible security that can be achieved. Note that a star
communication pattern is equivalent to the pattern presented in NIMPC. Using
our new t-robust NIMPC protocols for the star communication pattern can
enable a constant number of colluding parties for general communication patterns
without relying on strong assumptions such as iO.

In [16] the authors provide an exponential lower bound of the communica-
tion complexity of NIMPC protocols for arbitrary functions, and improve the
polynomial factors of the communication complexity of the NIMPC protocol
for arbitrary functions of Beimel et al. They further extend their result in [14]
improved complexity of the previous NIMPC protocol for arbitrary function with
multi-bit inputs, yet it still has exponential complexity.

1.3 Organization of the Paper

In Section 2, we start by an extensive overview to provide intuition for the
techniques we use in our transformation of PSM into t-robust NIMPC. After
some formal preliminaries in Section 3, we present one of the main components
of the transformation and of our NIMPC protocol for symmetric functions,
namely selectors, in Section 4. In Section 5, we define and construct another
component of the transformation, namely admissible linear indexing function.
The transformation itself is formally described and proven in Section 6. Finally,
in Section 7, we show our new NIMPC protocol for symmetric functions.

2 Overview

In this section we provide an extensive overview of the techniques we use in
our transformation from PSM to t-robust NIMPC with emphasis on ideas and
intuition at the expense of formalism. For the sake of simplicity, we assume that
the inputs of the parties are bits.
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2.1 Defining the Indexing Function

In the Introduction we showed that we need selectors that, for every given set of
inputs of the parties, choose a different PSM, and then output a consistent set of
labels for the input wires of the chosen PSM. In this section, we explain how to
choose the PSM. This is done via what we call an indexing function ind.

The indexing function ind takes as input a vector x, which reflects the inputs
of the parties. The entry for a non-colluding Pi will be set to its actual input,
xi and the rest of the entries are fixed by the adversary. When the adversary
controls t parties it can create 2t distinct vectors x, running over all possible
inputs of the colluding parties. These 2t vectors can in fact be reflected in 2t
evaluations of the selectors. Thus, we want to have (at least) 2t PSM and in
return require that the indexing function, ind, will map each one of the possible
vectors into a different PSM. We will index the PSM by σ in some set S.

We now build the indexing function ind. Let ind be a function that on input
x = (x1, . . . , xn) outputs an index σ ∈ S. The function ind should have the
property that if a party Pi is colluding then any input x to ind that has xi = 0
should produce a different σ than the same x but with xi = 1. In general, no
coalition of t colluding parties should be able to choose their inputs so that two
different inputs lead to the selection of the same index σ. Note that this does
not mean that ind should be injective but rather that if one fixes the inputs of
the non-colluding parties, then any two assignments of the remaining t inputs
should result in a different value σ output by ind. Going back to the example
from the Introduction, for t = 1 we implicitly defined ind(x) = x1 + · · ·+ xn and
obtained the desired property. Indeed, if all the inputs are fixed except the one
of a single colluding party Pi, each input xi of Pi yields a different value ind(x)
(note that this property assumes a single colluding party but does not require to
know who this party is).

For the general case of t colluding parties we build ind using a linear code.
We first observe that for any value σ in the range of ind, it should be that the
set ind−1(σ) forms a code of distance at least t + 1. Indeed, assume that two
different elements x1,x2 in the set ind−1(σ) have Hamming distance ≤ t and let
T ⊆ {1, . . . , n} be the set of entries where the two differ. Choosing T as the set
of colluding parties, we have that x1,x2 coincide in all the honest parties’ inputs,
differ on the colluding parties’ inputs, yet they are mapped to the same value σ.
This contradicts our requirement from ind. We can thus define ind via a linear
code of distance t+ 1 over a linear space Fnq (for some prime power q) as follows.
Let H ∈ F`×nq be the parity-check matrix of such a code, namely, the code is
formed by all vectors x ∈ Fnq for which H · x = 0. This means that H−1(0) is a
code of distance t+ 1 and the same is also true, by linearity, for H−1(σ) for any
other σ in the range of H. Thus, defining ind(x) = H · x we get the property we
needed. See Section 5 for the details.

We note that using such an H, we get that the set of possible values σ (i.e.,
the range of the function ind) is of size q` (` = t in our implementation, for
well-chosen prime powers q) and that is also the number of PSMs. This is the
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source of exponential complexity in our construction and the reason for why we
are polynomial-time only for constant t.

2.2 Reduction of Seli to Message-Outputting Protocols

Given an indexing function ind : x 7→ H · x ∈ F`q as above, our goal is now
to construct the selector Seli which is an NIMPC protocol for the following
functions:

hi : x ∈ {0, 1}n 7→ m′ind(x),i,xi
. (1)

where messages m′σ,i,b are implicit secret parameters of the NIMPC. The message
m′σ,i,b is the message that party Pi would send on input b in the PSM PSMσ.
We recall that the selector Seli ensures that an adversary should not be able to
obtain two messages m′σ,i,b and m′σ,i,1−b for the same σ and i.

We can reduce the construction of such selectors Seli to the construction of
an NIMPC for the following functions:

hσ,i,b : x ∈ Fnq 7→

{
m′σ,i,b if ind(x) = σ and xi = b,

⊥ otherwise.
(2)

The idea consists in running all the NIMPC protocols for all the functions hσ,i,b,
for each σ ∈ S and each b ∈ {0, 1}, in parallel, to get the selector Seli. Exactly
one of them will have a non-⊥ output. To avoid leaking the value b = xi and
σ = ind(x), these protocols are randomly permuted.

As the condition “ind(x) = σ and xi = b” in Eq. (2) is linear, we can rewrite
these functions in terms of matrix-vector operations, a representation that will
facilitate the design of NIMPC protocols for such functions. We first define the
following generic family of functions indexed by a public matrix M in Fk×nq (for
our constructions, k = `+ 1), a secret vector u in Fkq , and a secret message m̃ in
Fq:

hM,u,m̃ : x ∈ Fnq 7→

{
m̃ ∈ Fq if u = M · x,
⊥ otherwise.

An NIMPC for such a function is called a message-outputting protocol.
Now, assuming w.l.o.g. thatm′σ,i,b ∈ Fq,2 we can represent the above functions

hσ,i,b as special cases of hM,u,m̃ by setting

M = M (i) =
(
H
eᵀi

)
, u = u(σ,b) =

(
σ
b

)
, m̃ = m′σ,i,b ,

where σ ∈ F`q, and ei is the i-th vector of the canonical basis of Fnq .
To sum up, we have reduced the task of designing the selectors Seli to the

task of designing outputting-message protocols, i.e., NIMPC for hM,u,m̃. At this
point, we can completely ignore the process that lead us to considering these
functions hM,u,m̃.
2 We can always represent the message m′σ,i,b as a tuple of elements in Fq, and use an
independent message-outputting protocol for each of these elements.
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2.3 Robust Message-Outputting Protocols

Let us now design robust message-outputting protocols, i.e., NIMPC for hM,u,m̃.
We note that while in our application M is public and u and m̃ are to re-
main hidden, here our presentation treats u as public. A full description of the
NIMPC protocol for hM,u,m̃, including addressing the secrecy of u, is presented
in Section 4.2.

Linear secret sharing scheme. We start by recalling the following linear secret
sharing scheme LSSS [11], a variant of which is at the core of our construction.

The scheme is specified for n parties and an access structure defined on the
basis of a matrix M ∈ Fk×nq and vector v in Fkq . Parties Pi, for i in some set
I ⊆ {1, . . . , n}, can reconstruct the secret message m̃ if and only if:

v ∈ Span((M·,i)i∈I) , (3)

where M·,i denotes the i-th column of M , in which case, we say that the set I is
authorized.

The scheme provides each party Pi with a share s′i defined as:

s′i = sᵀ ·M·,i ,

where s is a randomly chosen vector in F kq . In addition, the scheme publishes (or
gives to each party)

s′0 = m̃− sᵀ · v ,

where m̃ is the secret being shared.
An authorized set I can recover the secret m̃ as follows. Since I is authorized,

there exist scalars λi ∈ Fq for i ∈ I so that
∑
i∈I λi ·M·,i = v. Thus, parties Pi

for i ∈ I recover the secret m̃ as:

m̃ = s′0 +
∑
i∈I

λi · s′i .

Conversely, if I is not an authorized set, the values s′i only define the linear
form v ∈ Fkq 7→ sᵀ · v for vectors v in the span of the columns M·,i, for i ∈ I. As
v is not in this span, the value sᵀ · v is uniformly random from the point of view
of the parties, and m̃ is completely masked.

NIMPC for when hM,u,m̃(x) = m̃. Back to our NIMPC construction for
the family hM,u,m̃, we want that the adversary can reconstruct m̃ if and only if
it has access to a vector x ∈ Fnq such that

u = M · x .
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More precisely, let T ⊆ {1, . . . , n} be the set of colluding parties. For any vector
x ∈ Fnq , let xT and xT̄ be the two vectors in Fnq defined as:

xT,i =
{
xi if i ∈ T ,
0 otherwise,

and xT̄ ,i =
{

0 if i ∈ T ,
xi otherwise.

In other words, xT corresponds to the inputs that the adversary can control3
while xT̄ corresponds to the inputs fixed by the honest parties. Each vector xT
is related to one value of the residual function that the adversary is allowed to
compute. We have:

x = xT + xT̄ .

With this terminology, we have that the adversary should be able to recon-
struct m̃ if and only if there exists a vector xT such that

u = M · x = M · (xT + xT̄ ) ,

or, equivalently,
u−M · xT̄ ∈ Span((M·,i)i∈T ) .

This corresponds exactly to the definition of the access structure for the above
LSSS scheme where v = u−M ·xT̄ . We adapt this scheme to our NIMPC setting
as follows (see Fig. 2 in Section 4.2 for the details).

Recall that an NIMPC protocol starts with a setup phase (a.k.a. offline prepro-
cessing) in order to generate the correlated randomness. It is indeed impossible
to achieve any reasonable security notion without correlated randomness in this
non-interactive setting.

In this setup phase, we first generate a uniform vector s ∈ Fkq and give to
each party Pi the share of the above secret sharing scheme, namely, s′i = sᵀ ·M·,i,
as part of its correlated randomness. Assuming we know xT̄ , we could define the
following value

s′0 = m̃− sᵀ · u+ sᵀ ·M · xT̄
that would correspond to the value s′0 in the secret sharing scheme when v =
u−M · xT̄ . Yet, this value (as well as v) depends on the set T and xT̄ that is
unknown at the time of sharing. Thus, the correlated randomness (and thus the
messages sent by the parties) needs to contain additional information to allow
authorized reconstruction of s′0 and, as a result, m̃.

To achieve this, in the setup phase, we also generate independent uniform
scalars r1, . . . , rn ∈ Fq, compute r0 =

∑n
i=1 ri, publish (in lieu of s′0):

µ0 = m̃− sᵀ · u− r0 ,

3 Note that while the honest parties’ inputs are from {0, 1}, we cannot control the
inputs the adversary uses. The adversary can choose inputs from Fq.
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and give to each party Pi the scalar ri as part of its correlated randomness.
Finally, party Pi on input xi outputs the message:

µi,xi
= ri + s′i · xi .

With these values, message m̃ can be reconstructed in case that M · x = u
through the following computation:

m̃ = µ0 +
n∑
i=1

µi,xi .

(this equality is obtained by developing the right-hand term as
µ0 + r0 +

∑
s′ixi = m̃− sᵀ · u+

∑
siM·,ixi = m̃− sᵀ · u+

∑
siui = m̃).

The above shows correctness of the NIMPC scheme for the family hM,u,m̃.
We now argue robustness, namely, only m̃ is disclosed and only in case that
M · x = u. All other information remains (information-theoretically) hidden.

Note that when the set of colluding parties is T , the adversary’s view (in
collusion with P0) consists of:

µ0 = m̃− sᵀ · u− r0

µi,xi
= ri + sᵀ ·M·,i · xi for i ∈ T̄ = {1, . . . , n} \ T

ri for i ∈ T
s′i = sᵀ ·M·,i for i ∈ T.

The proof of robustness follows by showing that all these values can be simulated
given only

s′0 = m̃− sᵀ · u+ sᵀ ·M · xT̄ and s′i = sᵀ ·M·,i for i ∈ T , (4)

which correspond to the shares of parties Pi, for i ∈ T , for the access structure
defined by Eq. (3) of the LSSS scheme when v = u−M · xT̄ . This shows that
the above view of the adversary contains no more information than the LSSS
shares hence implying the secrecy of m̃ in case that the equality u = M · x does
not hold.

Detecting when hM,u,m̃(x) =⊥. The above NIMPC protocol is almost a
protocol for hM,u,m̃, except that it always outputs something even when it should
output ⊥. To finish the construction, we need to add a way to detect whether
hM,u,m̃(x) =⊥ or not, i.e., whether M · x = u or not.

This is simple to achieve: in the setup phase, we just pick uniform independent
vectors r′1, . . . , r′n ∈ Fnq , compute r′0 =

∑n
i=1 r

′
i, publish ν0 = u+ r′0, and give

to each party Pi the vector r′i as part of its correlated randomness.
Then, on input xi, party Pi outputs (in addition to µi,xi):

νi,xi
= r′i +M·,i · xi .
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In other words, on input xi, Pi outputs the message mi,xi
= (µi,xi

,νi,xi
).

To check whether M · x = u, it is then sufficient to check whether:

ν0 =
n∑
i=1

νi,xi
.

Robustness and correctness are straightforward.

2.4 Putting it all Together

We now summarize the steps in our transformation from a PSM for a function
f to a t-robust NIMPC for the same function f . Full and formal details are
presented in Sections 4.2, 5, and 6 (see Fig. 4).

First, we choose a linear code of length n and of distance at least t+ 1, for
a well-chosen prime power q. Let H ∈ F`×nq be its parity-check matrix (we can
choose q as the smallest prime power greater or equal to n, and ` = t). We define
the indexing function as ind : x 7→ H · x ∈ F`q.

Second, in the setup phase, we consider q` copies of the PSM, indexed by
elements σ of F`q. We generate the correlated randomness of all these PSMs, and
denote by m′σ,i,b the message that party Pi would send on input b in the PSM
PSMσ of index σ, for σ ∈ F`q, i ∈ {1, . . . , n}, and b ∈ {0, 1}.

Third, we construct the n NIMPC protocols, Sel1, . . . ,Seln (the linear selec-
tors), for the functions h1, . . . , hn (resp.) defined in Eq. (1):

hi : x ∈ {0, 1}n 7→ m′ind(x),i,xi
.

As explained in Section 2.2, these selectors are constructed as parallel composition
of outputting-message protocols, described in Section 2.3.

The correlated randomness of the resulting t-robust NIMPC protocol just
consists in the concatenation of the correlated randomness of Sel1, . . . ,Seln. The
message that party Pi sends on input xi is the concatenation of the ones it would
send in Sel1, . . . ,Seln on input xi. To compute the output, the evaluator first
simulates the evaluators of Sel1, . . . ,Seln to get m′σ,i,xi

for all i ∈ {1, . . . , n} and
for σ = ind(x). It then simulates the evaluator of the original PSM on these
messages to get the output f(x1, . . . , xn).

3 Preliminaries

3.1 NIMPC Definition

We recall the definition of NIMPC protocols from [3]. We first introduce the
following notation.
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Let X1, . . . ,Xn be non-empty sets and let X denote their Cartesian product,
namely, X := X1 × · · · × Xn. We use vector notation (boldface font) to denote
the elements in X , e.g., x ∈ X (even though X is not necessarily a vector space).
For a subset T = {i1, . . . , it} ⊆ {1, . . . , n} and x = (x1, . . . , xn) ∈ X we denote
by xT the t-coordinate projection vector (xi1 , . . . , xit). For a function f : X → Ω,
we denote by f |T̄ ,xT̄

the function f with the inputs corresponding to positions T̄
fixed to the entries of vector xT̄ .4

Definition 3.1 (NIMPC Protocol). Let F = (Fn)n∈N>0
be an ensemble of

sets Fn of functions f : X → Ω, where Ω is a finite set and X is the Carte-
sian product of non-empty finite sets X1, . . . ,Xn. A non-interactive secure mul-
tiparty computation (NIMPC) protocol for F is a tuple of three algorithms
Π = (Setup,Msg,Rec), where:

– Setup takes as input unary representations of n and of the security param-
eter K, and (a representation of) a function f ∈ Fn and outputs a tuple
(ρ0, ρ1, . . . , ρn);5

– Msg takes as input a value ρi and an input xi ∈ Xi, and deterministically
outputs a message mi,xi

;
– Rec takes as input a value ρ0 and a tuple of n messages (mi,xi

)i=1,...,n and
outputs an element of Ω.

satisfying the following property:

– Correctness. For any values n ∈ N>0, security parameter K ∈ N, f ∈ Fn,
x ∈ X and (ρ0, . . . , ρn) R← Setup(f):

Rec(ρ0,Msg(ρ1, x1), . . . ,Msg(ρn, xn)) = f(x) .

While the previous definition is abstract, in the sequel, we will often view
NIMPC protocols as protocols with n parties P1, . . . , Pn with respective inputs
x1, . . . , xn, and an evaluator P0. This is actually the view adopted in the In-
troduction and in Section 2. More precisely, an NIMPC Π = (Setup,Msg,Rec)
yields a protocol in three phases as follows:

Offline preprocessing. For the security parameter K and the function f ∈ Fn,
a trusted party generates (ρ0, ρ1, . . . , ρn) R← Setup(1n, 1K, f) and gives ρi to
party Pi (for i ∈ {1, . . . , n}) and ρ0 to the evaluator P0.

Online messages. On input xi, party Pi computes mi,xi
:= Msg(ρi, xi) and

outputs mi,xi
to the evaluator P0.

Reconstruction. After receivingmi,xi
from all the parties Pi (for i ∈ {1, . . . , n}),

the evaluator P0 computes and outputs Rec(ρ0,m1,x1 , . . . ,mn,xn
).

4 In Section 3.2 we slightly change notation for vectors xT .
5 One refers to the vector (ρ0, ρ1, . . . , ρn) as the correlated randomness of the parties,
with ρ0 called public randomness.
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A polynomial-time NIMPC protocol for F is an NIMPC protocol (Setup,Msg,
Rec) where Setup, Msg, and Rec run in polynomial time in n and K. In particular,
functions f ∈ F should be representable by polynomial-size bit strings.

The online communication complexity of Π, CCon(Π), is defined as the maxi-
mum of the size of the messages mi,xi . The offline communication complexity
of Π, CCoff(Π), is defined as the maximum of the size of the correlated random-
ness ρi. The communication complexity CC(Π) is defined as the maximum of the
online communication complexity and of the offline communication complexity.

Robustness. We now recall the notions of robustness for NIMPC protocols.
Informally, T -robustness for a set T ⊆ {1, . . . , n} of colluding parties means that
if xT̄ represents the inputs of the honest parties, then an evaluator colluding
with the parties in set T can compute the residual function f |T̄ ,xT̄

on any input
xT but cannot learn anything else about the input of the honest parties. This
describes the best privacy guarantee attainable in this adversarial setting. The
formal definition is stated in terms of a simulator that can generate the view
of the adversary (evaluator plus the colluding parties in set T ) with sole oracle
access to the residual function f |T̄ ,xT̄

.
All our constructions and transformations are unconditional. But when com-

bined with statistically or computationally robust 0-NIMPC protocols, the re-
sulting protocols are only statistically or computationally robust. Therefore, we
also need to define statistical and computational variants of robustness.

Definition 3.2 (NIMPC Robustness). Let n ∈ N>0 be a positive integer and
T ⊆ {1, . . . , n} be a subset. An NIMPC protocol Π is perfectly (resp., statistically,
computationally) T -robust if there exists a randomized algorithm Sim (called a
simulator) such that for any f ∈ Fn and xT̄ ∈ XT̄ , the following distributions
are perfectly (resp., statistically, computationally) indistinguishable:

{Simf |T̄ ,x
T̄ (1n, 1K, T )} and {View(1n, 1K, f, T,xT̄ )} ,

where View(1n, 1K, f, T,xT̄ ) is the view of the evaluator P0 and of the colluding
parties Pi (for i ∈ T ) from running Π on inputs xT̄ for the honest parties Pi (for
i ∈ T̄ ): namely, ((mi,xT̄ ,i

)
i∈T̄

, ρ0, (ρi)i∈T ) where (ρ0, . . . , ρn) R← Setup(1n, 1K, f)
and mi,xT̄ ,i

← Msg(ρi, xT̄ ,i) for i ∈ T̄ .
Let t be an integer which is a function of n, then an NIMPC protocol Π is

perfectly (resp., statistically, computationally) t-robust if for any n ∈ N>0 and any
subset T ⊆ {1, . . . , n} of size at most t = t(n), Π is perfectly (resp., statistically,
computationally) t-robust. It is perfectly (resp., statistically, computationally)
fully robust, if it is perfectly (resp., statistically, computationally) n-robust.

Computational robustness is defined non-uniformly to simplify the defini-
tion. However, it is also possible to define a uniform version with an explicit
distinguisher which first chooses n, f , T , and xT̄ .
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Robustness does not necessarily imply that the simulator Sim is the same
for any n and T nor that it runs in polynomial time in n and K. Our construc-
tions are efficient in the sense that the simulators are polynomial-time (in the
communication complexity of the underlying protocols), and our transformations
preserve the efficiency of the simulator.

Simplifications. In the sequel, we simplify notations as follows. The security
parameter K is dropped for all perfectly robust protocols. Furthermore, we
suppose all the functions f ∈ Fn have the same domain X and the same number
of parties n. The set Fn is simply denoted F . We will sometimes refer to NIMPC
for single functions f , to mean NIMPC for F = {f}.

3.2 Group Embedding

While the definition of NIMPC is stated for arbitrary sets Xi, for our treatment it
is convenient (but not mandatory) to associate to these sets an addition operation
and a neutral element 0. For this, we use the convention that each input set
Xi is embedded (via an arbitrary injective mapping) into a group of cardinality
≥ |Xi| (same group for all i ∈ {1, . . . , n}). Thus, hereafter, we treat the sets Xi
as subsets of a group where these subsets always include the neutral element 0;
in our applications the group is typically a field Fq or a ring.

With this convention we re-define vectors of the form xT as follows:

XT := {x ∈ X | ∀i ∈ T̄ , xi = 0} , XT̄ := {x ∈ X | ∀i ∈ T, xi = 0} .

Let x ∈ X be a vector. We define the vectors xT ∈ XT and xT̄ ∈ XT̄ to be the
only two such vectors so that x = xT +xT̄ . In other words, for all i ∈ {1, . . . , n}:

xT,i =
{
xi if i ∈ T ,
0 otherwise,

and xT̄ ,i =
{

0 if i ∈ T ,
xi otherwise.

Let xT̄ ∈ XT̄ be a vector. With this notation we re-define the restriction of a
function f : X → Ω to T̄ ,xT̄ , which we denote by f |T̄ ,xT̄

, as follows:

f |T̄ ,xT̄
: xT ∈ XT 7→ f(xT + xT̄ ) ∈ Ω .

That is, f |T̄ ,xT̄
is the function f for which the inputs xi are fixed for i ∈ T̄

to xT̄ ,i.
Finally, we define the Hamming weight of an element x ∈ X as the number of

coordinates i for which xi 6= 0, and define Hamming distance between elements
x1 and x2 in X as the Hamming weight of x1 − x2.
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4 Selectors

In this section, we introduce the notion of selectors, which are used both in
our transformation from PSM to O(1)-robust NIMPC and in our construction
of NIMPC for symmetric functions. Intuitively, a selector is an NIMPC which
selects a given message in a collection of messages depending on the inputs of
the parties. In our construction, the collection of messages correspond to various
inputs of other PSMs or NIMPCs. In other words, selectors compose easily with
other NIMPCs. That is why they play a central role in our constructions.

We start by defining general selectors, before considering and constructing
two particular cases: linear selectors and NIMPC for Abelian programs. The
former selectors are used in our transformation from PSM to O(1)-robust NIMPC,
while the latter selectors are used for symmetric functions. Our constructions
are perfectly fully robust. An interesting point if that these selectors are also
new constructions of fully robust NIMPCs (of which very few are known, even
assuming the existence of one-way functions).

4.1 Definitions

General definition. The next definition is the general definition. Definitions
of the two interesting particular cases follow.

Definition 4.1. Let X1, . . . ,Xn,U ,M be finite sets. Let X := X1×· · ·×Xn. Let
sel : X → U be a function. A selector for the function sel and the message setM
is an NIMPC protocol for the following set of functions {Hsel,m̃}m̃∈MU , where:

hsel,m̃ : x ∈ X 7→ m̃sel(x) .

The message setM is often implicitly defined. We also implicitly assume that
elements ofM can be represented by vectors of dlogq |M|e elements in Fq. The
setMU is the set of tuples u = (m̃u)u∈U of messages inM, indexed by elements
in U .

In this paper, we are interested in two specific types of selectors: linear
selectors and NIMPC for Abelian program.

Linear selectors. Linear selectors are used for our transformation from PSM
to O(1)-robust NIMPC and are defined as follows.

Definition 4.2 (linear selector). Let Fq be a finite field. Let k and n be positive
integers. Let M ∈ Fk×nq be a matrix. A linear selector for M is a selector for the
function sel defined by:

sel : x ∈ Fnq 7→M · x ∈ U := Fkq .

In the above definition, X1, . . . , Xn are implicitly defined as Fq. The set of
messagesM can be any finite set.
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NIMPC for Abelian programs. For our construction of NIMPC for symmet-
ric functions, we need to introduce another type of selectors.

Abelian programs can be seen a generalization of symmetric functions intro-
duced in [3, Section 4]. More precisely, we have the following definition.

Definition 4.3 (Abelian program). Let G be a finite Abelian group. Let
X1, . . . ,Xn be subsets of G. Let X := X1 × · · · × Xn ⊆ Gn denote their Cartesian
product. Let Ω be some finite set. An Abelian program for G, X , and Ω is a
function:

h̃g̃ : x ∈ X 7→ g̃(
n∑
i=1

xi) ,

where g̃ : G→ Ω is a function.

An NIMPC for Abelian program is just an NIMPC for the class of Abelian
programs for a given group G, input set X , and output set Ω. In this paper, we
prefer to view NIMPC for Abelian programs as selectors, as follows.

Definition 4.4 (NIMPC for Abelian Programs). Let G be a finite (addi-
tive) Abelian group. Let X1, . . . ,Xn be subsets of G. Let X := X1×· · ·×Xn ⊆ Gn
denote their Cartesian product. An NIMPC for Abelian programs (for X and G)
is a selector for the function sel defined by:

sel : x ∈ X 7→
n∑
i=1

xi ∈ U =: G .

The messageM corresponds to the set Ω.
We remark that if G is a finite field Fq and X1 = · · · = Xn = G, then an

NIMPC for Abelian programs for X and G is a exactly a linear selector for the
matrix M = (1, . . . , 1) ∈ F1×n

q . However, for our constructions, the sets Xi are
strictly included in the group G. We therefore need to use completely different
techniques for the construction of NIMPC for Abelian programs, compared to
the ones used for the construction of linear selectors.

4.2 Construction of Linear Selectors

Let us now show how to construct linear selectors. As explained in Section 2.2,
we first define and construct outputting-message NIMPC protocols.

Outputting-message NIMPC.

Definition 4.5 (outputting-message NIMPC). Let Fq be a finite field and
M be a finite set. Let M ∈ Fk×nq be a matrix. An outputting-message NIMPC for
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M is a NIMPC protocol for the following set of functions
HM := {hM,u,m̃}u∈Fk

q ,m̃∈M
where:

hM,u,m̃ : x ∈ Fnq 7→

{
m̃ if u = M · x ,
⊥ otherwise,

where ⊥ is a fresh symbol not inM.

As for linear selectors, in the above definition, X1, . . . , Xn are implicitly defined
as Fq.

Theorem 4.6. Let Fq be a finite field and M be a finite message set. Let
M ∈ Fk×nq be a matrix. There exists a perfectly fully robust outputting-message
NIMPC for M with communication complexities:

CCon(Π) = (k + dlogq |M|e) · dlog qe ,
CCoff(Π) = (k + 2 · dlogq |M|e) · dlog qe .

Furthermore, the simulator for t-robustness runs in time qmin(t,k) · poly(q, k, n,
log |M|). In particular, when t or k is a constant, the simulator runs in polynomial
time in q, k, n, and log |M|.

The term qmin(t,k) in the simulator running time comes from the following
fact. The simulator needs to enumerate all the possible input values xT of the
colluding parties Pi (i ∈ T ; there are qt such values) or all the resulting values
M · xT (there are at most qk such values) to find whether there exists xT ∈ XT ,
such that hM,u,m̃|T̄ ,xT̄

(xT ) 6=⊥.

Proof (Theorem 4.6). Fig. 2 describes the construction of the outputting-message
NIMPC (SetupM ,MsgM ,RecM ) for M ∈ Fk×nq , when the message set isM = Fq.
The security proof follows the informal presentation from Section 2.3 and is
provided in the full version.

To construct an outputting-message NIMPC for an arbitrary message setM
(instead of Fq), we just split the messages in sub-messages in Fq (in other words,
we represent a message inM as a vector of dlogq |M|e elements of Fq) and using
an independent instance of the linear selector for each sub-message. To get the
communication complexities of the theorem, we remark that the vectors r′i can
be the same for each sub-message. ut

Construction of Linear Selectors. We can now construct linear selectors.
More precisely, we have the following theorem.
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Offline preprocessing (Setup). For the function hM,u,m̃ (M ∈ Fk×nq , u ∈ Fkq ,
m̃ ∈ Fq):
1. Pick a uniform vector s R← Fkq . For each i ∈ {1, . . . , n}, pick a uniform

scalar ri R← Fq and a uniform vector r′i
R← Fkq .

2. Compute:

µ0 := m̃− sᵀ · u−
n∑
i=1

ri ∈ Fq , ν0 := u+
n∑
i=1

r′i ∈ Fkq .

3. For each i ∈ {1, . . . , n}, compute s′i := sᵀ ·M·,i.
4. SetupM (hM,u,m̃) outputs (ρ0, . . . , ρn) where:

ρ0 := (µ0,ν0) , ρi := (s′i, ri, r′i) for i ∈ {1, . . . , n} .

Online messages. On input xi, party Pi computes

µi,xi
:= ri + s′i · xi ∈ Fq , νi,xi

:= r′i +M·,i · xi ∈ Fkq ,

and outputs Msg(ρi, xi) := mi,xi
:= (µi,xi ,νi,xi ).

Reconstruction. For (ρ0,m1,x1 , . . . ,mn,xn ), output:

Rec(ρ0,m1,x1 , . . . ,mn,xn ) :=
{
µ0 +

∑n

i=1 µi,xi if ν0 =
∑n

i=1 νi,xi ,

⊥ otherwise.

Fig. 2: Outputting-message NIMPC (SetupM ,MsgM ,RecM ) for M ∈ Fk×nq

Theorem 4.7. Let Fq be a finite field and M be a finite message set. Let
M ∈ Fk×nq be a matrix. There exists a perfectly fully robust linear selector for M
with communication complexities:

CCon(Π) = qk · (k + dlogq |M|e) · dlog qe ,
CCoff(Π) = qk · (k + 2 · dlogq |M|e) · dlog qe .

Furthermore, the simulator for t-robustness runs in time qk ·poly(q, k, n, log |M|).
In particular, when k is a constant, the simulator runs in polynomial time in q,
n, and log |M|.

Proof. Fig. 3 describes the construction of a fully robust linear selector (SetupM ,
MsgM ,RecM ) for M ∈ Fk×nq , from an outputting-message NIMPC. Complexities
are computed assuming the outputting-message NIMPC is the one from Theo-
rem 4.6. The security proof is provided in the full version. ut

4.3 NIMPC for Abelian Programs

In [3], Beimel et al. constructed a t-robust NIMPC for any Abelian program. But
the complexity is at least

(
n
t

)
· |M|. Because of the factor

(
n
t

)
= ω(nlog logn+log t),

this t-robust NIMPC protocol is not useful for our construction.
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Offline preprocessing (Setup). For the function hx7→M·x, m̃ (M ∈ Fk×nq , m̃ ∈
MU , where U = Fkq ):
1. For each u ∈ Fkq , compute (ρ′u,0, . . . , ρ′u,n) R← Setup′M (hM,u,m̃u).
2. Pick a random uniform permutation π of U .
3. Setup(1n, 1K, hM,m̃) outputs (ρ0, . . . , ρn) where ρi = (ρ′π(u),i)u∈U for i ∈
{0, . . . , n}.

Online messages. On input xi, party Pi computes m′u,i,xi
:= Msg′M (ρ′u,i, xi) for

u ∈ U , and outputs Msg(ρi, xi) := mi,xi
:= (m′u,i,xi

)
u∈U .

Reconstruction. For (ρ0,m1,x1 , . . . ,mn,xn ), compute for each u ∈ U :

m̃′u := Rec′M (ρ′u,0,m′u,1,x1 , . . . ,m
′
u,n,xn

) .

Search for u ∈ U such that m̃u 6=⊥. Abort if not exactly one such u is found.
Otherwise output Rec(ρ0,m1,x1 , . . . ,mn,xn ) := m̃′u.

Fig. 3: Linear selector ΠM = (SetupM ,MsgM ,RecM ) for M ∈ Fk×nq from
outputting-message NIMPC Π ′M = (Setup′M ,Msg′M ,Rec′M )

Instead, we propose a fully robust construction based on an information-
theoretic variant of Yao’s garbled circuits [10,15] (for a specific circuit with gates
over G instead of classical Boolean gates) with communication complexity O(n ·
|G|logn ·(log |Ω|+log |G|)). When G has logarithmic size in n, the communication
complexity is only nO(log logn), which is only slightly quasi-polynomial.

More formally, we prove the following theorem in the full version.

Theorem 4.8. Let G be an Abelian group and Ω = M be a finite message
set. Let X1, . . . ,Xn be subsets of G. Let X := X1 × · · · × Xn ⊆ Fnq denote their
Cartesian product. There exists a perfectly fully robust NIMPC Π for Abelian
programs (for G, X , andM), with communication complexities:

CCon(Π) ≤ |G|dlogne · (log |Ω|+ 2 · dlog |G|e) ,

CCoff(Π) = O(n · |G|dlogne+2 · (log |Ω|+ log |G|)) .

5 Admissible Linear Indexing Functions

We recall that the high level idea behind our transformation from a given PSM
(or 0-robust NIMPC) protocol to a t-robust NIMPC, is to create a collection
of instances (in the form of messages mi,xi) of the underlying PSM protocol
and then use an indexing function that maps parties’ inputs to an index that
identifies one and only one of these instances. Here we describe the indexing
function we use. An informal presentation of the ideas behind this function and
its design are presented in Section 2 (more specifically, Section 2.1).



22 Fabrice Benhamouda, Hugo Krawczyk, and Tal Rabin

5.1 Definition

Definition 5.1. Let X1, . . . ,Xn be subsets of Fq all containing 0. Let X :=
X1 × · · · × Xn ⊆ Fnq denote their Cartesian product. Let S be a finite set and
ind : X → S be a function. Let T ⊆ {1, . . . , n} be a subset and t ∈ {0, . . . , n} be
an integer.

The function ind is a T -admissible indexing function if for any x ∈ XT̄ , the
values ind(x+ y) for y ∈ XT are all distinct. The function ind is a t-admissible
indexing function if it is T -admissible for every subset T ⊆ {1, . . . , n} of size
|T | ≤ t.

We want S to be as small as possible as in our transformation we need to
consider |S| instances of the 0-robust protocol. In particular, to have polynomial
communication complexity, we need |S| to be polynomial in n.

We focus on admissible linear indexing functions, of the form

ind : x ∈ Fnq 7→ H · x ∈ F`q ,

where H ∈ F`×nq is a matrix. W.l.o.g., we assume H to be full rank (if not, we
replace H with a full rank sub-matrix that spans the same row-subspace of F 1×n

q ).
Note that full-rank matrices minimize the size of the indexing function’s range S
which in turn improves on the complexity of our construction.

5.2 Relation with Codes

A q-ary code of length n is a subset C of Fnq and the distance δ of C is the
smallest Hamming distance of two distinct vectors in C.

We have the following lemma.

Lemma 5.2. Let t ∈ {1, . . . , n} be an integer. Let X1, . . . ,Xn,X ,S be defined
as in Definition 5.1. Then a function ind : X → S is a t-admissible indexing
function (not necessarily linear) if and only if for any σ ∈ S, ind−1(σ) is a code
of distance δ ≥ t+ 1.

Proof. The proof follows from the fact that two vectors x and y of X have
distance at most t if and only if xT̄ = yT̄ for a subset T ⊆ {1, . . . , n} of size at
most t. ut

When we restrict ourselves to linear indexing functions, the corresponding
codes are either empty or shifts of the same linear code ind−1(0). We recall that
a q-ary linear code of length n and dimension k = n− ` is a q-ary code of length
n that is also a linear subspace C of Fnq . It can be defined as the kernel of a
full-rank matrix H ∈ F`×nq where H is called the parity-check matrix of the code,
namely, C = {x ∈ Fnq | H · x = 0}. A q-ary linear code of length n, of dimension
k, and of minimum distance δ is called a [n, k, δ]q-code.

We have the following lemma which is a specialization of Lemma 5.2 to the
linear case.
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Lemma 5.3. Let t ∈ {1, . . . , n} be an integer. Let H ∈ F`×nq be a full-rank
matrix. The function ind : x ∈ Fnq 7→ H · x is a t-admissible linear indexing
function if and only if H is a parity-check matrix of a linear code of distance
δ ≥ t+ 1.

Proof. H is a parity-check matrix of a linear code of distance δ if and only if
ind−1(0), the kernel of matrix H, is a linear code of distance δ, and this holds
if and only if ind−1(σ) is a code of distance δ for all σ ∈ F`q. By Lemma 5.2
the latter condition holds if and only if ind is a t-admissible linear indexing
function. ut

5.3 Constructions

Constructions of t-admissible linear indexing functions can be obtained using
different error correcting codes, in particular Reed-Solomon codes [13] as stated
next.

Lemma 5.4. Let t ∈ {1, . . . , n} be an integer. Let q ≥ n be a prime power. Let
` = t. Then there exists a t-admissible linear indexing function ind : x ∈ Fnq 7→
H · x, for a matrix H ∈ F`×nq . In particular, H can be a parity-check of the
Reed-Solomon [n, n− `, `+ 1]q-code.

We remark that between n and 2n, there always exists a power of 2.6 Therefore,
the above lemma shows the existence of t-admissible linear indexing functions
with |S| = q` ≤ (2n)t.

In the special case where t = 1, there is a more efficient construction using
the parity code, i.e.:

H =
(
1 . . . 1

)
∈ F1×n

q .

In that case, the prime power q can be any prime power (it does not need to be
at least equal to n).

5.4 Lower Bound (on the Need for Constant t)

Using the relation of t-admissible indexing functions and codes of distance δ ≥ t+1
(Lemma 5.2) together with a sphere-packing-like Hamming bound, we get the
following lower bound on |S|. It shows that if t = ω(1) (as a function of n→∞),
|S| cannot be polynomial in n. It is formally proven in the full version.

Lemma 5.5. Let t ∈ {1, . . . , n} be an integer. Let X1, . . . ,Xn,X ,S be defined
as in Definition 5.1. We suppose that for any i ∈ {1, . . . , n}, |Xi| ≥ q′ for some
integer q′ ≥ 2. (In the case of linear indexing functions, Xi = Fq and we can take
q′ = q.) If a function ind : X → S is t-admissible, then:

|S| ≥
bt/2c∑
k=0

(
n

k

)
(q′ − 1)k ≥

(n
t

)bt/2c
.

6 Better bounds for intervals containing a prime (power) exist. See [1].
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6 From 0-Robustness to O(1)-Robustness

Here we present the main construction and result of the paper, namely, a trans-
formation from any PSM (i.e., 0-robust NIMPC) to a t-robust NIMPC where the
latter has polynomial complexity for constant t provided the original protocol is
polynomial time and the input set for each party is of polynomial size too. The
transformation uses two main tools: the linear selector presented in Section 4.2
and admissible linear indexing functions introduced in Section 5. The main ideas
and intuition about these tools and constructions are described in Section 2. The
transformation is presented in Fig. 4, but first let us formally define what an
NIMPC transformation is.

6.1 Definition of an NIMPC Transformation

An NIMPC transformation is a function T which takes as input an NIMPC
protocol Π ′ = (Setup′,Msg′,Rec′) (usually 0-robust) and outputs a new NIMPC
protocol Π (usually t-robust for t > 0). We focus on blackbox transformations
that use the original algorithms Setup′,Msg′,Rec′ in a blackbox way (i.e., as
oracles).

For convenience and without loss of generality we assume that the original
NIMPC protocols Π ′ do not use public randomness, namely, ρ0 =⊥ (indeed,
if ρ0 6=⊥, ρ0 can be appended to ρ1 and to all the messages sent by the first
party P1).

Definition 6.1 (NIMPC transformation). Let X1, . . . ,Xn, Ω be non-empty
finite sets. An NIMPC transformation is a tuple of three algorithms T =
(Setup,Msg,Rec), each with oracle access to three other algorithms Π ′ = (Setup′,
Msg′,Rec′) satisfying the following property:

– Functionality preservation. If Π ′ = (Setup′,Msg′,Rec′) is an NIMPC
protocol for some set F of functions, then Π := T (Π ′) := (SetupΠ

′
,MsgΠ

′
,

MsgΠ
′
)7 is also an NIMPC protocol for the same set F of functions.

To be useful, an NIMPC transformation also needs to be robust. We consider
a very strong notion of robustness. Informally, a transformation T is T -robust if
T (Π ′) can be proven T -robust for any 0-robust Π ′, in a black-box way. More
formally, we have the following definition.

Definition 6.2 (robustness). Let n ∈ N>0 and T ⊆ {1, . . . , n}. An NIMPC
transformation T = (Setup,Msg,Rec) is T -robust if there exists a simulator
S̃im with oracle access to four oracles (Setup′,Msg′,Rec′, O) such that: if Π ′ =

7 The notation SetupΠ
′
is a shortcut for SetupSetup′,Msg′,Rec′ , i.e., Setup with the three

oracles Setup′,Msg′,Rec′.
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(Setup′,Msg′,Rec′) is an NIMPC protocol, the following two distributions are
indistinguishable:

{S̃im
Π′,On,K,f,T (1n, 1K, T )} and {View(1n, 1K, f, T,xT̄ )} ,

where On,K,f,T : xT ∈ XT 7→ View′(1n, 1K, f, ∅,xT̄ +xT ), and View and View′ are
the views from running Π = T (Π ′) and Π ′ (resp.), as defined in Definition 3.2.

Let t be an integer, then an NIMPC transformation is t-robust if it is T -robust
for any subset T ⊆ {1, . . . , n} of size at most t.

The power of a T -robust NIMPC transformation for transforming 0-robustness
into t-robustness, is shown in the following lemma whose proof follows directly
from the above definition.

Lemma 6.3. Let n ∈ N>0, T ⊆ {1, . . . , n}. Let T = (Setup,Msg,Rec) be a
T -robust NIMPC transformation. If Π ′ is a perfectly (resp., statistically, com-
putationally) 0-robust NIMPC, then Π = T (Π ′) is perfectly (resp., statisti-
cally, computationally) T -robust, with the simulator Sim defined as follows:
Simf |T̄ ,x

T̄ (1n, 1K, T ) = S̃im
Π′,O′n,K,f,T (1n, 1K, T ), where O′n,K,f,T : xT ∈ XT 7→

Sim′f |∅,x
T̄

+xT (1n, 1K, ∅) using notation in Definition 6.2 and where Sim′ is a
simulator for Π ′).

6.2 Actual Transformation

The main theorem of the paper is presented next. It proves that the transforma-
tion described in Fig. 4 is functionality preserving (Definition 6.1) and robust
(Definition 6.2).

Theorem 6.4. The NIMPC transformation T = (Setup,Msg,Rec) depicted in
Fig. 4 satisfies:

1. Functionality preservation. For any NIMPC protocol Π ′ = (Setup′,Msg′,
Rec′) for a set of functions F from X = X1 × · · · ×Xn, the resulting NIMPC
protocol Π = T (Π ′) has the following online and offline communication
complexities (when the underlying linear selector is the one from Theorem 4.7):

CCon(Π) ≤ q`+1 · n · (`+ 1 + dCCon(Π ′)/ log qe) · dlog qe ,
CCoff(Π) ≤ q`+1 · n · (`+ 1 + 2 · dCCon(Π ′)/ log qe) · dlog qe ,

where q ≥ max(|X1|, . . . , |Xn|) and q is a prime power, and ` is the dimension
of the range of the linear indexing function ind : x ∈ Fnq 7→ H · x ∈ F`q.8

8 We recall that Π ′ is assumed not to use any public randomness: ρ0 =⊥.
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Components.
– PSM protocol Π ′ = (Setup′,Msg′,Rec′) for F .
– A prime power q ≥ max(|X1|, . . . , |Xn|).
– A t-admissible linear indexing function ind : x ∈ Fnq 7→ H · x ∈ F`q.
– A linear selector ΠM = (SetupM ,MsgM ,RecM ) for M ∈ Fk×nq (with
k = `+ 1) and for a large enough message spaceM containing at least
all the possibles messages of the PSM protocol Π ′.

– Matrices M (i) and vectors u(σ,v) for i ∈ {1, . . . , n}, σ ∈ F`q, v ∈ Fq,
defined as: M (i) :=

(
Hᵀ eᵀi

)ᵀ and u(σ,v) =
(
σᵀ v

)ᵀ, where ei is the i-th
vector of the canonical basis of Fnq .

Offline preprocessing (Setup). For the function f ∈ F :
1. For σ ∈ F`q, i ∈ {1, . . . , n}, v ∈ Xi, compute (⊥, ρ′σ,1, . . . , ρ′σ,n) R←

Setup′(1n, 1K, f) and m′σ,i,v := Msg′(ρ′σ,i, v).
2. For i ∈ {1, . . . , n}, define m̃(i) ∈ MF`+1

q by: m̃(i)
u(σ,v) = m′σ,i,v for σ ∈ F`q

and v ∈ Xi (m̃(i)
u is arbitrary if u cannot be written as u = u(σ,v)) and

then compute (ρi,0, . . . , ρi,n) R← SetupM(i)(hx 7→M(i)·x, m̃(i)).
3. Setup(1n, 1K, f) outputs (ρ0, . . . , ρn) where ρj := (ρi,j)i∈{1,...,n} for j ∈
{0, . . . , n}.

Online messages. On input xj , party Pj computes mi,j,xj
:= MsgM(i)(ρi,j , xj),

for i ∈ {1, . . . , n}, and outputs Msg(ρj , xj) := mj,xj
:= (mi,j,xj )

i∈{1,...,n}.
Reconstruction. For (ρ0,m1,x1 , . . . ,mn,xn ), compute m′i := RecM(i)(ρ0,i,

mi,1,x1 , . . . ,mi,n,xn ) for i ∈ {1, . . . , n}, and output Rec′(⊥,m′1, . . . ,m′n).

Fig. 4: Main NIMPC transformation T = (Setup,Msg,Rec)

2. T -robustness. For any T ⊆ {1, . . . , n}, if ind is a T -admissible indexing
function and ΠM is a perfectly T -robust linear selector, the NIMPC trans-
formation from Fig. 4 is T -robust. The corresponding simulator S̃im runs
in polynomial time in n,K, q`,CCon(Π ′), |XT | and calls its oracle O once for
each vector xT ∈ XT , when the underlying linear selector is the one from
Theorem 4.7.

The proof of the theorem appears in the full version. We have the following
corollary.

Corollary 6.5. Let t be a positive integer. Let Π ′ = (Setup′,Msg′,Rec′) be an
NIMPC protocol for a set of functions F from X = X1 × · · · × Xn. Let q be
the smallest prime power at least equal to max(n, |X1|, . . . , |Xn|). We recall that
q ≤ 2 max(n, |X1|, . . . , |Xn|).9 Let ind : x ∈ Fnq 7→ H · x ∈ F`q be the t-admissible
linear indexing function defined in Lemma 5.4 (in particular ` = t).

The NIMPC protocol Π = T (Π ′) from Fig. 4 is perfectly (resp., statistically,
computationally) t-robust, if Π ′ is perfectly (resp., statistically, computationally)

9 Better bounds for intervals containing a prime (power) exist. See [1].
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0-robust. Furthermore, if t = O(1) and the communication complexity of Π ′ and
the input size Xi (for all i) are all polynomial in n and K, then the communication
complexity of Π is polynomial in n and K. If in addition Π ′ is polynomial-time,
so is Π. Similarly, if the simulator for Π ′ is polynomial-time, so is the simulator
for Π.

We point out that the simulator S̃im is uniform in T and n.

7 NIMPC for Symmetric Functions

In this section, we construct NIMPC protocols for symmetric functions with
better asymptotic complexity than with our generic transformation (from an
efficient 0-robust NIMPC for symmetric function which exists for any symmetric
function) or with [3, Section 4]. The communication complexity of the latter
construction is

(
n
t

)
·O(2t ·n4), while our new construction for symmetric functions

achieve a communication complexity of nlog logn+log t+O(1). Our construction uses
our new fully robust NIMPC for Abelian programs in Section 4.3.

7.1 Symmetric Functions

Let us first recall the definition of a symmetric function. We focus on the case
where each input is a bit. But our construction can be generalized.

Definition 7.1. Let n be a positive integer and Ω be a finite set. A function
f : {0, 1}n → Ω is symmetric if and only if for any permutation π of {1, . . . , n}
and for any x ∈ {0, 1}n, f(x1, . . . , xn) = f(xπ(1), . . . , xπ(n)).

7.2 Overview of the Construction

We remark that symmetric functions f : {0, 1}n → Ω are Abelian programs
(Definition 4.3) over any group G = ZN with N > n:

f : x ∈ {0, 1}n 7→ g̃(
n∑
i=1

xi) ∈ Ω ,

where g̃ : ZN → Ω is some function.
If we directly use the construction of NIMPC for Abelian programs in Sec-

tion 4.3, we would get a fully robust NIMPC for symmetric function with
communication complexity nlogn+O(1) · log |Ω|. This is already an interesting
result. However, we would like to go further. For that we use the Chinese Re-
mainder Theorem to decompose the initial function over a large group Zn+1 or
Z into functions over smaller groups.



28 Fabrice Benhamouda, Hugo Krawczyk, and Tal Rabin

Decomposition and recombination using CRT. Let p1 < · · · < p` be the
first ` prime numbers, such that N :=

∏`
j=1 pj ≥ n+ 1. We recall that there is

a ring isomorphism CRT:
∏`
j=1 Zpj → ZN . In particular CRT(y1, . . . , y`) is the

only integer y in {0, . . . , N − 1} such that y mod pj = yj for any j ∈ {1, . . . , `}.
By the prime number theorem, we can choose pj = O(logn) for j ∈ {1, . . . , `}
(and ` = O(logn) too). The main idea is the following: we first compute some
well-chosen Abelian programs over each group Zpj

(over the original inputs
(x1, . . . , xn) ∈ X ) and then combine back the intermediate results (corresponding
to some function of

∑n
i=1 xi mod pj) to compute g̃(

∑n
i=1 xi).

We need to combine the results in a robust way. We consider a fully robust
NIMPC for the following set of functions (with ` parties) F ′ = {f ′g̃}g̃ indexed by
a function g̃ : Zn+1 → Ω, where the function f ′g̃ :

∏`
j=1 Zpj

→ Ω ∪{⊥} is defined
by:

f ′g̃(y1, . . . , y`) 7→
{
g̃(y) if y := CRT(y1, . . . , y`) ∈ {0, . . . , n} ,
⊥ otherwise.

We can use the construction in [3, Section 3, Theorem 3.3] to get a fully robust
NIMPC for F ′ of communication complexity O(N · p2

` · ` · log |Ω|) = O(n · log |Ω| ·
polylog(n)). Let m′j,yj

be the message that party Pj would send on input yj in
this protocol.

For each j ∈ {1, . . . , `}, we can then use our construction for Abelian programs
in Section 4.3 in the groups Zpj

for the input sets X1 = · · · = Xn = {0, 1} and
the messages m̃j defined by m̃j,v = m′j,v (for each v ∈ Zpj

) to enable the
computation (or selection) of m′j,yj

for yj =
∑n
i=1 xi mod pj . The resulting

construction would have communication complexity nlog logn+O(1) · log |Ω|, as
|Zpj
|logn = nlog logn+O(1).

Issues with robustness. Unfortunately, this construction is not t-robust: the
adversary might use different values xi for i ∈ T as input to each NIMPC for
Abelian program. For example, if P1 is colluding, the adversary can compute
for any j: mj,yj and mj,yj+1, if we write yj =

∑n
i=2 xi mod pj . He can then mix

and match them when using them as input of the fully robust protocol for f ′g̃. In
other words, he can compute:

g̃(CRT(y1 + b1, . . . , y` + b`))

for any (b1, . . . , b`) ∈ {0, 1}`, instead of just:

g̃(CRT(y1, . . . , y`)) and g̃(CRT(y1 + 1, . . . , y` + 1)) ,

(i.e., b1 = · · · = b` ∈ {0, 1}).
One first solution consists in choosing pj such that when b1, . . . , b` are not

the same bit (or more generally not the same integer in {0, . . . , t} when t parties
are colluding):

CRT(y1 + b1, . . . , y` + b`) > n ,
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so that g̃(CRT(y1 + b1, . . . , y` + b`)) =⊥. This works but makes parameters
cumbersome to compute and non-optimal.

We propose a cleaner solution. Instead of working in Zpj
, we work in

Gj = Zpj
× Zt+1. The second part zj of an element (yj , zj) ∈ Gj plays a

role very similar to indexes σ in our transformation from 0-robustness to O(1)-
robustness. It prevents mix and matching values computed from different inputs.
We consider a fully robust NIMPC protocol for the following set of functions
(with ` parties) F ′ = {f ′g̃}g̃ indexed by a function g̃ : Zn+1 → Ω, where the
function f ′g̃ :

∏`
j=1 Gj → Ω ∪ {⊥} is defined by:

f ′g̃((y1, z1), . . . , (y`, z`)) =


g̃(y) if y := CRT(y1, . . . , y`) ∈ {0, . . . , n}

and z1 = · · · = z` ,

⊥ otherwise.

Let m′j,yj ,zj
be the message that party Pj would send on input (yj , zj) in this

protocol.
For each j ∈ {1, . . . , `}, we now use our construction for Abelian programs

in Section 4.3 in the groups Gj for the input sets X1 = · · · = Xn = {0, 1} and
the messages m̃j defined by m̃j,v = m′j,v (for each v ∈ Gj), where 1 ∈ {0, 1}
is identified to (1, 1) ∈ Gj and 0 ∈ {0, 1} is identified to (0, 0) ∈ Gj . The
communication complexity becomes nlog logn+log t+O(1) · log |Ω|.

7.3 Formal Construction

We formally prove the following theorem in the full version.

Theorem 7.2. Let F = {fg̃}g̃ be the set of symmetric functions fg̃ : x ∈
{0, 1}n 7→ g̃(

∑n
i=1 xi) ∈ Ω, where g̃ : Zn+1 → Ω and Ω is some finite set. Let t be

an integer. There exists a t-robust NIMPC for F with communication complexity
nlog logn+log t+O(1) · log |Ω|. In particular, if t = O(logn), the communication
complexity if nO(log logn) · log |Ω|.
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