19,253 research outputs found

    Hagiography, Teratology, and the History of Michael Jackson

    Get PDF
    Before his death, Michael Jackson arguably was one of the most famous living celebrities to walk the planet. Onstage, on air, and onscreen, he captivated the attention of millions of people around the world, whether because they loved him or loved to hate him. In an attempt to explain his popularity and cultural influence, I analyze certain theoretical and methodological approaches found in recent scholarship on western hagiographic and teratological texts, and apply these theories and methods to selected biographies written on Michael Jackson. By interpreting the biographies in this way, I suggest why saints, monsters, and celebrities have received considerable attention in their respective communities, and demonstrate how public responses to these figures are contextual, constructed, and often contradictory

    Constitutional Challenges to Montana’s Drunk Driving Laws

    Get PDF
    Challenges to DU

    Editorial

    Get PDF

    Editorial

    Get PDF

    Influence of blade aerodynamic model on prediction of helicopter rotor aeroacoustic signatures

    Get PDF
    Brown’s vorticity transport model has been used to investigate how the local blade aerodynamic model influences the quality of the prediction of the high-frequency airloads associated with blade–vortex interactions, and thus the accuracy with which the acoustic signature of a helicopter rotor can be predicted. The vorticity transport model can accurately resolve the structure of the wake of the rotor and allows significant flexibility in the way that the blade loading can be represented. The Second Higher-Harmonic Control Aeroacoustics Rotor Test was initiated to provide experimental insight into the acoustic signature of a rotor in cases of strong blade–vortex interaction. Predictions of two models for the local blade aerodynamics are compared with the test data. A marked improvement in accuracy of the predicted high-frequency airloads and acoustic signature is obtained when a lifting-chord model for the blade aerodynamics is used instead of a lifting-line-type approach. Errors in the amplitude and phase of the acoustic peaks are reduced, and the quality of the prediction is affected to a lesser extent by the computational resolution of the wake, with the lifting-chord model producing the best representation of the distribution of sound pressure below the rotor

    Orientation-Dependent Transparency of Metallic Interfaces

    Get PDF
    As devices are reduced in size, interfaces start to dominate electrical transport making it essential to be able to describe reliably how they transmit and reflect electrons. For a number of nearly perfectly lattice-matched materials, we calculate from first-principles the dependence of the interface transparency on the crystal orientation. Quite remarkably, the largest anisotropy is predicted for interfaces between the prototype free-electron materials silver and aluminium for which a massive factor of two difference between (111) and (001) interfaces is found

    Modelling Heat Transfer of Carbon Nanotubes

    Full text link
    Modelling heat transfer of carbon nanotubes is important for the thermal management of nanotube-based composites and nanoelectronic device. By using a finite element method for three-dimensional anisotropic heat transfer, we have simulated the heat conduction and temperature variations of a single nanotube, a nanotube array and a part of nanotube-based composite surface with heat generation. The thermal conductivity used is obtained from the upscaled value from the molecular simulations or experiments. Simulations show that nanotube arrays have unique cooling characteristics due to its anisotropic thermal conductivity.Comment: 10 pages, 4 figure

    Measurement of the intrinsic damping constant in individual nanodisks of YIG and YIG{\textbar}Pt

    Get PDF
    We report on an experimental study on the spin-waves relaxation rate in two series of nanodisks of diameter ϕ=\phi=300, 500 and 700~nm, patterned out of two systems: a 20~nm thick yttrium iron garnet (YIG) film grown by pulsed laser deposition either bare or covered by 13~nm of Pt. Using a magnetic resonance force microscope, we measure precisely the ferromagnetic resonance linewidth of each individual YIG and YIG{\textbar}Pt nanodisks. We find that the linewidth in the nanostructure is sensibly smaller than the one measured in the extended film. Analysis of the frequency dependence of the spectral linewidth indicates that the improvement is principally due to the suppression of the inhomogeneous part of the broadening due to geometrical confinement, suggesting that only the homogeneous broadening contributes to the linewidth of the nanostructure. For the bare YIG nano-disks, the broadening is associated to a damping constant α=4104\alpha = 4 \cdot 10^{-4}. A 3 fold increase of the linewidth is observed for the series with Pt cap layer, attributed to the spin pumping effect. The measured enhancement allows to extract the spin mixing conductance found to be G=1.551014 Ω1m2G_{\uparrow \downarrow}= 1.55 \cdot 10^{14}~ \Omega^{-1}\text{m}^{-2} for our YIG(20nm){\textbar}Pt interface, thus opening large opportunities for the design of YIG based nanostructures with optimized magnetic losses.Comment: 4 pages, 3 figure

    Electronic control of the spin-wave damping in a magnetic insulator

    Get PDF
    It is demonstrated that the decay time of spin-wave modes existing in a magnetic insulator can be reduced or enhanced by injecting an in-plane dc current, IdcI_\text{dc}, in an adjacent normal metal with strong spin-orbit interaction. The demonstration rests upon the measurement of the ferromagnetic resonance linewidth as a function of IdcI_\text{dc} in a 5~μ\mum diameter YIG(20nm){\textbar}Pt(7nm) disk using a magnetic resonance force microscope (MRFM). Complete compensation of the damping of the fundamental mode is obtained for a current density of 31011A.m2\sim 3 \cdot 10^{11}\text{A.m}^{-2}, in agreement with theoretical predictions. At this critical threshold the MRFM detects a small change of static magnetization, a behavior consistent with the onset of an auto-oscillation regime.Comment: 6 pages 4 figure
    corecore