1,182 research outputs found

    Do synaesthesia and mental imagery tap into similar cross-modal processes?

    Get PDF
    Synaesthesia has previously been linked with imagery abilities, although an understanding of a causal role for mental imagery in broader synaesthetic experiences remains elusive. This can be partly attributed to our relatively poor understanding of imagery in sensory domains beyond vision. Investigations into the neural and behavioural underpinnings of mental imagery have nevertheless identified an important role for imagery in perception, particularly in mediating cross-modal interactions. However, the phenomenology of synaesthesia gives rise to the assumption that associated cross-modal interactions may be encapsulated and specific to synaesthesia. As such, evidence for a link between imagery and perception may not generalize to synaesthesia. Here, we present results that challenge this idea: first, we found enhanced somatosensory imagery evoked by visual stimuli of body parts in mirror-touch synaesthetes, relative to other synaesthetes or controls. Moreover, this enhanced imagery generalized to tactile object properties not directly linked to their synaesthetic associations. Second, we report evidence that concurrent experience evoked in grapheme-colour synaesthesia was sufficient to trigger visual-to-tactile correspondences that are common to all. Together, these findings show that enhanced mental imagery is a consistent hallmark of synaesthesia, and suggest the intriguing possibility that imagery may facilitate the cross-modal interactions that underpin synaesthesic experiences. This article is part of a discussion meeting issue 'Bridging senses: novel insights from synaesthesia'

    Dispersion monitoring for high-speed WDM networks via two-photon absorption in a semiconductor microcavity

    Get PDF
    Due to the continued demand for bandwidth, network operators have to increase the data rates at which individual wavelengths operate at. As these data rates will exceed 100 Gbit/s in the next 5-10 years, it will be crucial to be able to monitor and compensate for the amount of chromatic dispersion encountered by individual wavelength channels. This paper will focus on the use of the novel nonlinear optical-to-electrical conversion process of two-photon absorption (TPA) for dispersion monitoring. By incorporating a specially designed semiconductor microcavity, the TPA response becomes wavelength dependent, thus allowing simultaneous channel selection and monitoring without the need for external wavelength filterin

    A microlensing measurement of the size of the broad emission line region in the lensed QSO 2237+0305

    Full text link
    We present spatially resolved spectroscopic images of the gravitationally lensed QSO 2237+0305 taken with the GMOS Integral Field Unit (IFU) on the Gemini North telescope. These observations have the best spatial resolution of any IFU observations of this object to date and include the redshifted CIII] and MgII QSO broad lines. Unlike Mediavilla et al. 1998, we find no evidence for an arc of resolved broad line emission in either the CIII] or MgII lines. We calculate the image flux ratios of both the integrated emission lines and the surrounding continua. The flux ratios of the CIII] and MgII emission lines are consistent with each other but differ substantially from their corresponding continuum flux ratios and the radio/mid-IR flux ratios previously published. We argue that the broad emission line region must be microlensed and the CIII] and MgII emission regions must be approximately the same size and co-located along the line-of-sight. Assuming a simple model for the broad emission line region and the continuum region, we show the size of the CIII] / MgII broad line region is ~0.06 h_{70}^{1/2} pc and the continuum region is <= 0.02 h_{70}^{1/2} pc.Comment: 7 pages, 7 figures. Accepted for publication in MNRA
    • 

    corecore