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Abstract 

This paper presents a numerical study of creep crack growth in a fracture mechanics 
specimen. The material properties used are representative of a carbon-manganese steel at 
360oC and the constitutive behaviour of the steel is described by a power law creep 
model. A damage-based approach is used to predict the crack propagation rate in a 
compact tension specimen and the data are correlated against an independently 
determined C* parameter. Elastic-creep and elastic-plastic-creep analyses are performed 
using two different crack growth criteria to predict crack extension under plane stress and 
plane strain conditions. The plane strain crack growth rate predicted from the numerical 
analysis is found to be less conservative than the plane strain upper bound of an existing 
ductility exhaustion model, for values of C* within the limits of the present creep crack 
growth testing standards. At low values of C* the predicted plane stress and plane strain 
crack growth rates differ by a factor between 5 and 30 depending on the creep ductility of 
the material. However, at higher loads and C* values, the plane strain crack growth rates, 
predicted using an elastic-plastic-creep material response, approach those for plane stress. 
These results are consistent with experimental data for the material and suggest that 
purely elastic-creep modelling is unrealistic for the carbon-manganese steel as plastic 
strains are significant at relevant loading levels.  
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1 Introduction 

Many components used in power generation plants are continually exposed to high 

temperatures and failure processes such as net section rupture, creep crack growth or 

fatigue crack growth can occur within the high temperature regime. Safe and accurate 

methods to predict creep crack growth (CCG) are therefore required in order to assess the 

reliability of such components. With advances in finite element (FE) methods, more 

complex models can be applied in the study of CCG where simple analytical solutions or 

approximate methods are no longer applicable. In this work the role of fracture mechanics 

parameters in estimating creep crack growth rates is examined using FE analysis and the 

results are validated with experimental data.  
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Hayhurst et al. [1] were among the first to carry out finite element calculations using a 

Kachanov-type [2] damage variable to account for the evolution of creep damage within 

the material. While these studies focused on uncracked structures (notched bars), the 

approach has also been used to estimate creep damage and rupture life in cracked 

components, e.g. [3]–[9]. In many of these studies, e.g. [1], [3], [8], special procedures 

have been used to remove elements within the FE mesh which have reached a critical 

level of damage. The loss of load bearing capacity due to creep damage within the 

element is thus accounted for. However, it is well known that the use of a coupled damage 

approach in conjunction with element removal can lead to a mesh sensitive result, e.g. 

[10], [11]. Furthermore, the removal of elements may not accurately model the situation 

where a sharp crack is growing within a creeping material. In this work therefore an 

alternative approach is adopted whereby nodes ahead of the crack tip are released when 

the damage reaches a critical value. A similar node-release approach to model crack 

growth under creep conditions has been employed in recent work, [12] and [13]. 

However, in [12], [13] the crack growth rate has been assumed a priori, based on 

experimental data, and has not been determined within the analysis. Therefore the 

approach cannot be used for the prediction of creep crack growth and rupture life.  

In the present study a damage variable, based on the equivalent (von Mises) creep strain 

rate and the Cocks and Ashby void growth model [14], is used to predict creep crack 

growth in a compact tension (CT) fracture specimen within an FE framework. The creep 

parameter, C*, which is independently determined from the numerically calculated load-

line displacement rate, is used to correlate the predicted crack growth data. In addition, a 

sensitivity analysis of the CCG predictions is presented, to identify the effects of mesh 

size and relevant elastic-plastic and creep material properties. Both plane stress and plane 

strain conditions are examined.  

2 Material data 

2.1 Uniaxial creep properties 

The material properties for the carbon manganese (C-Mn) steel at 360°C were obtained 

from uniaxial tensile tests and creep tests [15]. The details of the material composition 

and the relevant mechanical properties are given in Table 1 and Table 2 respectively. The 

material batch chosen in this study has been designated as a high nitrogen content C-Mn 

steel. This alloy has been previously shown to be more brittle under creep conditions than 

a corresponding low nitrogen C-Mn steel [15]. 
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A representative creep curve (creep strain vs. time) is shown in Figure 1. In general, 

creep deformation can be considered to be composed of three regimes, namely primary, 

secondary and tertiary creep regimes. The use of an average creep rate obtained directly 

from creep rupture data has been proposed [16] to account for all three stages of creep. 

This average creep rate, Aε& , is described schematically in Figure 1 and is defined by 
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where εf is the uniaxial failure strain, tr is the time to rupture and σ is the applied stress. 

The variables , σo, AA and nA in equation (1) are generally taken as material constants, 

though as illustrated below they may depend on stress. 

oε&

Figure 2 and Figure 3 show the dependence of Aε& and εf respectively on stress for the 

C-Mn steel determined from constant load creep tests on round bars [15]. It may be seen 

in Figure 2 that the creep exponent, nA, defined by equation (1), is not constant at a given 

temperature but increases with stress. The values of AA and nA used in the analysis are 

shown in Table 2, which are the ones most relevant to the test conditions being examined 

(relatively low stress and strain rate). Figure 3 shows the dependence of uniaxial creep 

failure strain, εf, on stress for the steel at 360°C.  It is seen that within the scatter of the 

data εf is independent of stress. Due to the observed scatter the numerical analysis was 

performed using the mean value of the creep failure strain and the upper and lower bound 

values (mean ± 2s (where s is the standard deviation)) estimated as 18%, 26% and 10% 

respectively. In addition, for the purposes of a sensitivity analysis, analyses with failure 

strain equal to 50% were also carried out. 

2.2 High Temperature Fracture Mechanics 

The theory behind the correlation of high temperature crack growth data essentially 

follows that of elastic-plastic fracture mechanics theory. Various aspects of the 

characterisation of creep crack growth have been reviewed in [17] and [18].  

For situations where elasticity dominates (short times and/or high loads) the linear elastic 

stress intensity factor, K, may be used to predict crack growth. Under steady state 

conditions, however, the crack tip stress and strain rate fields are characterised by the 

parameter C* and linear elasticity may no longer be applicable. For a power law creeping 

material, the stress and strain rate in the vicinity of the crack tip are given by (see e.g. 

[17]), 
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where r and θ  measure distance and polar angle relative to the crack tip, In is a parameter 

which depends only on the creep exponent, n, and ij
~σ  and ij

~ε are dimensionless functions. 

The parameter C* in equation (2) may be obtained from a path independent integral and is 

analogous to the J integral for rate independent material behaviour [19]. C* may also be 

interpreted as an energy release rate analogous to the energy definition of J, i.e., 

da
dU

B
C

∗
∗ −= 1 , (3) 

where a is the crack length, B is the thickness and U* is the potential energy rate. The C* 

integral has been widely used as a parameter for correlating CCG under steady state creep 

conditions [20]. 

Based on the form of the crack tip fields in equation (3) and using a ductility exhaustion 

argument it was shown in [21], [22], that the creep crack growth rate, a , may be written 

as, 
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where rc is the size of the creep process zone and  is the appropriate  crack tip ductility, 

(taken as the uniaxial failure strain, εf, for plane stress and εf /30 for plane strain [23]). 

This model, known as the NSW model, was shown to provide good agreement with 

measured CCG rates for a range of materials. The cracking rate a  in equation (4) can be 

written in simplified form as 

*
fε

&

φ*DCa =& , (5) 

where D and φ are material constants, with φ = n/(n+1) from the NSW model and the 

value of D depends on the uniaxial creep properties and the appropriate failure strain .  *
fε

2.3 Creep Crack Growth Testing and Analysis 

In laboratory tests, rather than use the line integral definition or equation (3) directly, C* 

may be determined from the creep load-line displacement rate. Following ASTM E1457-

01 [20] C* is given by the following equation: 
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where P is the applied load, b is the remaining ligament ahead of the crack and Bn is the 

net thickness (= B for a specimen without side grooves). The factor, F, in equation (6) 

depends on geometry and creep exponent, n. For a CT specimen F is given by 
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where a is crack length and W the specimen width. In equation (6) ∆  is the load-line 

creep displacement rate and is calculated as follows: 

c&

peTc ∆∆∆∆ &&&& −−= , (8) 

where ,  and  are the total, elastic and plastic displacement rates respectively. 

The contribution to the total displacement rate from the elastic displacement rate, ∆ , is 

due to the change in crack length and an equation for  is provided in ASTM E1457-01 

[20]. Creep crack growth testing is normally carried out at loads where plastic 

deformation is insignificant [17] and it is assumed that >> .  Hence the creep strain 

rate can be calculated as [20] 

T∆& e∆& p∆&

e&

e∆&

∆& c p∆&

eTc ∆∆∆ &&& −= . (9) 

The creep crack growth behaviour of the C-Mn steel at 360oC, obtained from tests on CT 

specimens of different sizes and analysed according to ASTM E1457-01 [20], is shown in 

Figure 4 (taken from [15]). These data will be used to validate the finite element models 

presented in this paper. 

The data in Figure 4 show no apparent size effect during steady state creep crack growth 

behaviour within the examined sizes (W = 15, 25 and 50 mm) and the cracking rate a  can 

therefore be characterized by C*. A mean fit to the data is shown in Figure 4 using 

equation (5) with D = 4  and φ = 0.89 (C* in J/m2h and da/dt in mm/h). (Note 

that this value of φ is consistent with the relationship that φ = n/n+1). Also included in the 

figure are the upper and lower bounds of the CCG rate based on the mean ± 2s. 

&

51070. −×

3 Finite Element Modelling 

3.1 Damage accumulation 

In this work a ductility exhaustion approach is used to account for the accumulation of 

creep damage. The damage parameter, ω, is defined such that 0 ≤ ω ≤ 1 and failure occurs 
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when ω  approaches 1. The rate of damage accumulation, ω&  is related to the equivalent 

creep strain rate by the relationship, 

∗=
f
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ε
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&  (10)

and the total damage at any instant is the integral of the damage rate in equation (10) up to 

that time: 

∫=
t

dt
0

ωω & . (11)

Thus, failure occurs in the vicinity of the crack tip when the local accumulated strain 

reaches the local (multiaxial) creep ductility. Assuming that the mechanism of creep crack 

growth is by void coalescence, then the multiaxial creep ductility, , can be obtained 

from a number of available void growth models (e.g. [14], [24] and [25]). It has been 

found that the Cocks and Ashby model [14] is the most appropriate for representing the 

multiaxial creep ductility of the material under study. The model describes the ratio of the 

multiaxial to uniaxial failure strain, as 
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where σm/σe is the ratio between the mean (hydrostatic) stress and equivalent (von Mises) 

stress. This ratio is often referred to as the triaxiality. Note that within an FE analysis the 

value of  changes for a fixed material point since it depends on the triaxiality through 

equation (12), which, as will be seen, changes with time as the stress redistributes local to 

the crack tip. 

∗
fε

3.2 Elastic, plastic and creep strains 

Calculations have been  performed using elastic-creep and elastic-plastic-creep behaviour. 

In the latter case the plastic strains are understood to be independent of strain rate giving 

the total strain as 
crplel εεεε ++= , (13)

where, εel, εpl and εcr are elastic, plastic and creep strains respectively. As discussed in 

Section 2.1 the creep response is described by a secondary creep law using the average 

creep properties. The yield strength of the steel at 360oC is 240 MPa (see Table 2) which 
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is relatively low, so the effect of plasticity may be important for this material. The plastic 

response is assumed to be governed by a Mises flow rule with isotropic strain hardening 

and was obtained by fitting to uniaxial tensile test data at 360°C. The post-yield strain 

hardening response is treated as piece-wise linear up to the UTS (= 570 MPa) beyond 

which no strain hardening occurs. For an elastic-creep analysis or during unloading the 

plastic strain rate is zero. 

3.3 Finite Element Framework 

A two dimensional FE model of a CT specimen with W = 25 mm, B = 12.5 mm and 

a/W = 0.45 is examined. Two different meshes for the CT specimen are used (see Figure 

5) in order to examine the influence of mesh size. For the coarse mesh in Figure 5(a) the 

mesh size at the crack tip is 0.25 mm, while for the fine mesh in Figure 5(b) the mesh size 

at the crack tip is approximately 0.0154 mm, which is similar to the grain size of the 

C-Mn steels examined. All finite element analyses were conducted using ABAQUS 5.8 

[26] and a typical coarse mesh contains 602 four noded elements while the fine mesh 

contains 7581 four noded elements. Full account is taken in the analysis of large 

displacements and rotations, due to, e.g., the blunting of the initially sharp crack tip. 

Two methods for modelling crack extension were considered. The first, which will be 

identified as the fixed-node model, considers that the crack has propagated when damage, 

ω, as derived from equations (10)–(12), reaches 0.999 at two integration points ahead of 

the crack tip. There is no change in the boundary conditions and the damage parameter 

simply acts as an indicator to locate the position of the crack tip as damage spreads 

throughout the specimen. In the second method, identified as the node-release model, the 

node at the crack tip is released when ω reaches 0.999 and as a result the crack propagates 

through the mesh along the axis of symmetry.  

Figure 6 shows a schematic illustration of the node release method. It is assumed that 

the crack grows in the plane of the initial crack front, i.e. along the symmetry plane. The 

model therefore assumes a sharp fronted flat crack, which idealises the actual condition of 

multiple microscopic cracks linking up ahead of the main crack front. A user subroutine 

(MPC) which allows the user to alter nodal constraints during the analysis, was used to 

release the nodes. Within this subroutine, the y-displacement at a node is held fixed until 

the node is to be released and, subsequent to the release, the constraint in the y-direction is 

no longer applied. In the crack growth analysis the maximum extent of crack growth is 

determined by the mesh design (crack grows through a region of uniform sized elements 
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as shown in the inset to Figure 5(b)). With this mesh design the maximum amount of 

crack growth is approximately 3.75 mm (i.e. 0.33a) for both fine and coarse mesh design.  

Table 3 provides a complete list of the FE runs carried out using different combinations of 

material properties and conditions. The results from these analyses are discussed in 

section 4. 

4 Finite Element Results 

A typical result from a node-release analysis is illustrated in Figure 7, which shows the 

total load-line displacement obtained from the FE analysis compared with two 

experimental results. Tertiary creep behaviour (rapid increase in displacement towards the 

end of the test) is predicted by the finite element analysis, due to the reduction in area 

caused by cracked growth.  It is seen that the experimental data generally lie between the 

plane stress and plane strain predictions. The creep load-line displacement data from the 

numerical analysis is subsequently used to calculate the parameter C* using equation (6). 

The FE results can then be compared directly with the experimental CCG results shown in 

Figure 4. 

Figure 8 illustrates damage contours for the node-release method, in a typical plane strain 

analyses. The ‘wake’ of creep damage behind the current crack tip may be seen in the 

figure. The relatively uniform size and shape of the region suggests that crack growth is 

occurring within the steady state regime for this analysis. 

The rate of accumulation of damage depends strongly on the triaxiality, σm/σe, through 

equation (12). Under plane stress conditions it has been found from the FE analysis that 

σm/σe is relatively insensitive to the distance ahead of the crack tip, while under plane 

strain conditions σm/σe varies with distance from the crack tip and also depends on the 

extent of crack growth. As an example Figure 9 shows the variation of σm/σe with 

distance from the crack tip under plane stress and plane strain conditions using the node-

release method. The average values for σm/σe from these analyses are 0.6 and 2.5 for 

plane stress and strain respectively. Similar values for crack tip triaxiality σm/σe were 

found in [27] and the values are consistent with the theoretical crack tip distributions of 

equation (2) (see e.g. [28]). (Note however that equation (2) predicts that σm/σe is 

independent of distance from the crack tip r, implying the zone of dominance of the HRR 

solution may be very small for the plane strain case). The implications of this strong 
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difference in crack tip triaxiality between plane stress and plane strain conditions will be 

seen in the subsequent sections. 

4.1 Comparison between fixed-node and node-release models of CCG 

The difference in the predicted increase in crack length (∆a) with time for the two models 

of crack extension is examined in this section. The coarse mesh shown in Figure 5(a) was 

used and elastic-creep analyses for plane stress and plane strain conditions were 

conducted. Figure 10 shows the amount of crack growth predicted by the fixed-node and 

the node-release model under plane stress and strain conditions when the applied load is 

9 kN. The experimental data are also included on the figure. Since the first data point for 

the coarse mesh will be at ∆a = 0.25 mm (the smallest element size) the finite element 

results are extrapolated back to the initial crack length (∆a = 0) using the slope of the 

predicted curve at ∆a = 0.25 mm. This provides a more realistic representation of the 

initiation period before crack growth occurs.  

It is seen in Figure 10 that the amount of crack growth predicted by the node-release 

model is greater than that from the fixed-node model, particularly under plane strain 

conditions, and is also closer to the experimental data (as might be expected). However in 

all cases the predicted amount of crack growth is less than that observed in the 

experiments, so both models are non-conservative. By comparing Figure 10(a) and (b) it 

can be seen that the predicted rate of crack growth under plane strain conditions is 

initially higher than that for plane stress conditions (predicted crack growth is negligible 

under plane stress conditions for time, t < 6×103 hours). However the crack growth rate 

under plane stress conditions becomes higher for t > 6×103 hours. A possible explanation 

for this behaviour is that the stress and strain distributions for plane strain conditions are 

more localised than those for plane stress conditions (see Figure 9). Therefore although 

the damage in the element at the crack tip accumulates faster for plane strain conditions 

than for plane stress conditions, the damage accumulates more slowly in the second and 

third elements from the crack tip, leading to an overall faster rate of crack growth under 

plane stress at the same load. 

4.2 Effects of mesh size and crack tip plasticity in the node-release model  

In the previous section, it was found that the node-release model gives better agreement 

with the experimental data than the fixed-node model. In this section, the effect of mesh 

size and crack tip plasticity on the predictions from the node-release model are examined.  
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The predicted increase in crack length with time for each analysis is shown in Figure 11. 

Both coarse and fine meshes have been examined, under plane stress and plane strain 

conditions with and without plastic deformation.  It is seen that in all cases reducing the 

mesh size leads to an increase in the rate of crack growth for both plane stress and plane 

strain conditions. (Note that the difference in mesh size between the coarse and fine mesh 

is more than an order of magnitude). Thus, using the nodal release method does not 

eliminate the effect of mesh size on crack growth predictions. The increase in crack 

growth rate with decreasing mesh size is due to the increased stress and strain in the 

vicinity of the crack tip for the fine mesh. Therefore, particularly for plane strain 

conditions, the time for the damage at the crack tip to reach 0.999 is much shorter and the 

crack extends much more quickly. It is seen however, that the use of the fine mesh 

produces a more conservative result—the predicted crack growth rates for the fine mesh 

in Figure 11(a) and (b) are higher than the experimental values. The effects of plastic 

deformation are examined in Figure 11(c) and (d). It can be seen that the inclusion of 

crack tip plasticity leads to a decrease in the amount of crack growth at the same load, 

particularly for the fine mesh analysis. This is because the crack tip stresses at short times 

are reduced due to plastic deformation and the creep strain rates are therefore also 

reduced. It has also been found that under plane strain conditions the crack tip triaxiality 

is also reduced when plasticity is included. Since plastic strains do not contribute to creep 

damage (see equation (10)) the overall effect is a reduction in the amount of crack growth 

for the same applied load. It is also clear from Figure 11 that the effect of plasticity is less 

significant for the coarse mesh—for the coarse mesh the stress levels at the crack tip are 

not sufficient to lead to significant amounts of plastic strain. 

 It can be seen in Figure 11 that the mesh size effect is more significant for the elastic 

analysis than the elastic-plastic analysis. This is to be expected, as plastic deformation 

will reduce the high stress concentration at the sharp crack tip in the fine mesh. Thus the 

inclusion of plastic strains tends to mitigate the effect of mesh size and reduce the 

conservatism of the fine mesh analysis leading (in this case) to an underprediction of the 

crack growth rate. However, the excellent agreement between the plane stress elastic-

plastic model and the experimental data (Figure 11(c)) is noted. 

4.3 Predicted CCG rate under plane stress and plane strain conditions 

In this section the ability of the creep parameter C* to characterise the CCG rate is 

examined. The fine mesh was used and both plane stress and plane strain conditions were 
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examined. The upper-bound value of εf (= 50%) is used, which results in a relatively slow 

crack growth rate and ensures that transient effects are relatively small (i.e. crack growth 

occurs under predominantly steady state conditions).  

Figure 12 shows the CCG rate predictions plotted against C* using an elastic-creep and an 

elastic-plastic-creep response. Here C* was calculated from the load line displacement 

rate as discussed in section 2.3 and the transient parts of the crack growth curves (the 

‘tails’) have been removed for each analysis so only results under (global) steady state 

conditions are presented. The dash lines in Figure 12 are a linear fit to the elastic-creep 

plane stress and plane strain results. In order to cover a wide range of C* values, two 

simulations were run for each case analysed, a low load case, P = 5 kN and a high load 

case, P = 7 kN. It can be seen from Figure 12 that under plane stress conditions there is 

little difference in the CCG rate predicted by the elastic-creep and the elastic-plastic-creep 

analysis. It may also be seen that for an elastic-creep analysis, the predicted CCG rate 

under plane strain conditions is consistently higher than for plane stress by a factor of 

about 5 (as indicated by the dotted lines in the figure). However for an elastic-plastic-

creep analysis when C* > 20 J/m2h, the plane strain CCG rate predictions converge 

towards the plane stress result. This behaviour is somewhat unexpected as the NSW 

model, [21] and [22], predicts that plane strain crack growth rates should be higher than 

plane stress crack growth rates at the same value of C*. 

In order to confirm that the observed behaviour is not due to inaccuracies in the load-line 

method for estimating C* from equation (6) the FE data were replotted using the line 

integral value for C* obtained directly from the FE analysis. The value of C* was 

averaged over five remote contours for each crack increment and was found to be almost 

path independent once steady state conditions had been reached (the difference is about 

15% over the five contours). Figure 13 shows the CCG rate plotted against the two 

estimates of C* for an elastic-plastic creep analysis. It is clear from the figure that the 

same trends are observed for the CCG rate regardless of the method used to estimate C*. 

It should however be noted that for higher values of C* (C* > 10 J/m2h), the line integral 

estimates of C* are slightly lower than those obtained from equation (6). This small 

difference could be due to the increasing magnitude of the plastic strain rate  at higher 

values of C* which has been included in the estimation of  (using equation (9)) when 

calculating C* from equation (6). At lower values of C* the effects of plasticity are 

insignificant and the correlation between the two methods is better. It should be noted that 

p∆&

c∆&
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the effect of plastic strain on the value of C* is small (as shown in Figure 13) and 

therefore equation (9) provides a good estimation of creep strain rate in this study 

suggesting that . eTc ∆∆∆ &&& −≈

fε
72
1

fε *

 

4.4 Comparison between experimental and predicted CCG rate  

In this section the da/dt vs. C* curves obtained from the FE analysis are compared with 

the experimental data. The mean value of uniaxial failure strain, εf = 18%, has been used 

in the analyses in order to allow direct comparison with the data. Elastic-plastic-creep 

analyses were conducted using the fine mesh. 

Figure 14 shows the CCG rate from the FE analysis plotted against C*. As in Figure 12, 

C* has been calculated from the predicted load line displacement rate. The experimental 

data band taken from Figure 4 is also shown in the figure. For the elastic-plastic analysis a 

similar trend to that seen in Figure 12 is observed—the predicted plane strain CCG rate 

converges towards the plane stress predictions at high values of C*.  

As previously stated, in the region where the relatively short term experimental data are 

obtained there is little effect on the CCG rate due to specimen size (see Figure 4). This is 

consistent with the predicted CCG rates in Figure 14  (i.e. the same response for plane 

stress and plane strain analyses at high values of C*). The mean values of σm/σe from 

Figure 9 are approximately 0.6 and 2.5, for plane stress and plane strain conditions 

respectively. If these values are used in equation (12) the values obtained for εf
*

PE (plane 

strain) and εf
*

PS (plane stress) are 

PEfε * ≈  and fPS ε
2
1≈  (14) 

Thus the FE analysis suggests that a factor of 30 between the plane stress and strain 

failure strain as recommended in [23] is appropriate. Also taking into account the different 

values of In under plane strain and plane stress conditions, equation (4) implies a factor of 

about 24 between the plane strain and plane stress CCG rate. However, while this 

difference in crack growth rate between plane strain and plane stress is indeed predicted 

by the FE analysis at low values of C*, it is not seen at higher values (see Figure 13 and 

Figure 14).  

The ASTM E1457-01 [20] bounds for CCG testing in terms of the load-line creep 

displacement rate divided by the load-line total displacement rate ( ) are included in 

Figure 14. For convenience the notation

Tc ∆/∆ &&

Tc ∆∆ &&& =∆ is used. In [20] in order to characterise 
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CCG by C*, it is required that ∆& > 0.5. It is also suggested in [20] that for ∆& < 0.25, the 

linear elastic stress intensity factor K may be applicable. The NSW predictions, equation 

(4), are shown in Figure 14 taking = εf for plane stress and  = εf /30 for plane strain 

[23]. Comparing the finite element results to the predictions of the NSW model and 

disregarding the limits set by ASTM E1457-01 [20], there is a good comparison between 

the CCG rate bounds of the FE and the NSW model at low values of C* (where elastic-

creep conditions hold). Furthermore, there is good agreement over the full range of C* 

between the NSW plane stress prediction and the plane stress FE result. 

*
fε *

fε

∆&

∆&

4.5 Effect of Creep Failure Strain on CCG Rate  

In this section, the effect of creep failure strain on the CCG rate is examined. For these 

analyses εf = 10%, 18%, 26%, and 50%. The first three values for failure strain are the 

lower , mean and upper bound of the failure strain for the C-Mn steel as shown in Figure 

3 and the case εf  = 50% was included to represent a more ductile material.  

Figure 15 shows the comparison of predicted relative displacement rate, ∆& , against C* for 

the different values of εf. As can be seen in Figure 15, for plane stress conditions, the 

values of ∆&  for all failure ductilities are significantly above 0.5. However, for plane strain 

conditions and low values of C*, can be below 0.5, particularly for the lower creep 

ductility. A reduction in creep ductility leads to an increase in the crack growth rate and a 

corresponding increase in ∆  and thus a decrease in e& ∆& . This suggests that for a brittle 

material (low εf), high constraint levels (plane strain) and low loads (low C*),  CCG 

cannot be correlated using C*. For ductile materials (high εf),  > 0.5 and CCG will be 

characterised by C*. 

Figure 16(a) shows FE predictions of plane stress CCG rate versus C* for the highest and 

lowest creep ductilities and compares the results with the individual predictions lines from 

the plane stress NSW model (equation (4)). Similar behaviour has been seen for the other 

two creep ductilities. It is clear that the FE elastic-plastic-creep crack growth rate 

prediction is approximately the same as the NSW model using the appropriate failure 

ductility, when C* > 0.2 J/m2 h. The equivalent results for plane strain conditions are 

illustrated in Figure 16(b). In this case the results for all four values of failure strain are 

included. It may be seen that although the predicted crack growth rates are significantly 

different at low values of C*, at higher C* values the FE predictions converge towards the 
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plane stress lines (compare data in Figure 16(a) and (b)) and the difference in crack 

growth rate is reduced.  

The values of CCG rate are plotted as hollow symbols in Figure 16(b) for ∆&  > 0.5, as 

grey symbols for ∆&  < 0.5 and in black for ∆& < 0.25. It can be seen that in all cases the 

upper-bound (plane strain) NSW prediction is conservative when ∆&  > 0.5 (i.e. the NSW 

model predicts faster CCG rates than the FE analysis) and the model remain conservative 

(though less so) provided ∆& > 0.25. This suggests that the CCG rate can also be safely 

correlated by C* and the NSW upper bound prediction in the region 0.25 < ∆& < 0.5. This 

region generally corresponds to conditions of low stress and could be described as a 

transition region between creep ductile and creep brittle conditions. Note that the value of 

∆&  used here includes the contribution from the plastic displacement rate and therefore the 

true value of ∆&  is slightly smaller. This further suggests that the present ASTM transition 

limit of 0.5 for C* characterisation [20] is somewhat conservative and could safely be 

lowered.   

5 Discussion and Conclusions 

This paper presents methods for predicting creep crack growth  in a CT specimen, using a 

damage variable to quantify time dependent crack tip degradation. The material examined 

is a carbon-manganese steel at a test temperature of 360 ºC.  A power law creep model is 

used to describe the constitutive behaviour of the steel and both plane stress and plane 

strain conditions are examined using the finite element method. The predicted CCG rate is 

correlated using the creep parameter C* determined from the load-line displacement rate. 

The effect of mesh size, crack tip plasticity and uniaxial failure ductility, εf, on the creep 

crack growth rate were examined and found to have a stronger influence under plane 

strain conditions than under plane stress conditions.  

The results obtained from the analyses suggest that for this material the effect of crack tip 

plasticity cannot be ignored over the full loading range. When plastic strains are included, 

it is found that at high values of C* the predicted plane strain crack growth rate 

approaches that for plane stress whereas at low loads they differ by a factor of ∼ 5–30 

depending on the creep ductility. The convergence of the plane stress and plane strain 

predictions at high values of C* is believed to be due to the reduction in constraint level in 

the plane strain geometry caused by plastic deformation. The trend is consistent with the 

 14 



experimental observation of little effect of specimen size on CCG at high values of C* for 

this material. Laboratory CCG testing times are usually between 1,000 and 5,000 h giving 

values of C* usually in excess of 1 J/m2h. On the other hand, component used in plant are 

exposed to creep conditions at lower stresses for periods of 104–105 h leading to values of 

C* << 1 J/m2h for most components. The FE results therefore suggest that the prediction 

of component life using the data band from short-term experimental tests may not be 

sufficiently conservative.  

It is also observed that provided ∆& > 0.25 the predicted finite element CCG rates at low 

loads (C* < 1 J/m2h) are consistent with the predictions using the NSW ductility 

exhaustion model, over a wide range of failure ductilities, although it is found that the 

NSW model is considerably more conservative. This suggests that the limits of ∆& , as 

defined by ASTM E1457-01 [20], which disallows the use of C* at ∆& < 0.5 may need to 

be re-examined for long term test conditions of more brittle materials. Additional 

experimental investigations to derive more accurate creep properties and the use of 

detailed creep constitutive equations are needed to validate these findings further.  
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Table 1: Chemical composition of C-Mn steel 

 C Si Mn P S Cr Mo Ni Cu Al N FN  

High FN† content C-Mn steel 0.16 0.28 0.87 0.014 0.014 0.09 0.05 0.2 0.15 0.019 0.019 0.0110

†FN is calculated “free nitrogen” at 920°C for all materials 

 

Table 2: Material constants for the high nitrogen C-Mn steel at 360°C (for AA and nA, 
stress is in MPa and time in hours) 
Temperature Young's modulus σy AA nA 

360°C 190 Gpa 240 MPa 1.78×10-30 10.0  

 

Table 3: FE analyses conducted in section 4 

Section Crack growth Model Mesh size Plasticity Failure strain, εf 

Fixed-node model 4.1 

Node-release model 

Coarse mesh No 18% 

No Coarse mesh

Yes 

Fine mesh No 

4.2 Node-release model 

 Yes 

18% 

No 4.3 Node-release model Fine mesh 

Yes 

50% 

4.4 Node-release model Fine mesh Yes 18% 

10% 

18% 

26% 

4.5 Node-release model Fine mesh Yes 

50% 
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Figure 1: Schematic creep curve illustrating secondary creep rate, , and average creep 
rate  
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Figure 2: Average creep strain rate versus  
stress for C-Mn at 360°C 

Figure 3: Creep ductility for C-Mn steels  
at 360°C, including mean and 2s lines ±
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Figure 4: Steady state creep crack growth versus C* for the C-Mn steel at 360°C showing 

the bounds for ±2s 
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Figure 5: FE mesh for CCG analysis of CT specimen (a) coarse mesh and (b) fine mesh 
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Figure 6: Schematic illustration of crack growth using the nodal release method.  
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Figure 7: Comparison of experimental load- line displacement from two tests with the FE 

analysis for a CT specimen under plane stress and plane strain conditions 
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Figure 9: Triaxiality σm/σe plotted against distance from the crack tip for the CT specimen 

for four different times (a) plane stress (b) plane strain  
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Figure 10: Predicted crack growth against time for node-release and fixed-node models 

(a) plane stress, (b) plane strain. 
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Figure 11: Effect of mesh size on predicted CCG (a) plane stress, elastic analysis, (b) 

plane strain, elastic analysis (c) plane stress, elastic-plastic analysis, (d) plane strain, 

elastic-plastic analysis 
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Figure 12: Prediction of CCG rate against C*. The dotted lines are the mean lines through 

the elastic plane strain and elastic or elastic plastic plane stress analyses. 

      
Figure 13: CCG rate plotted against C* using the contour integral and load line displacement 

rate definitions 
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Figure 14: Comparison of predicted CCG rate and experimental data for C-Mn steel. 

Arrows indicates creep brittle/ductile bound [20] 
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Figure 15: ( Tc ∆∆∆ &&& = ) plotted against C* for a range of failure strains, (a) plane stress 

(b) plane strain 
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Figure 16: Effect of creep ductility εf on CCG rate (a) plane stress elastic-plastic analysis, (b) 

plane strain elastic-plastic analysis. 
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