774 research outputs found

    History and modes of star formation in the most active region of the Small Magellanic Cloud, NGC 346

    Get PDF
    We discuss the star formation history of the SMC region NGC 346 based on Hubble Space Telescope images. The region contains both field stars and cluster members. Using a classical synthetic CMD procedure applied to the field around NGC 346 we find that there the star formation pace has been rising from a quite low rate 13 Gyr ago to \approx 1.4 \times 10^{-8} Mo yr^{-1}pc^{-2} in the last 100 Myr. This value is significantly higher than in other star forming regions of the SMC. For NGC 346 itself, we compare theoretical and observed Color-Magnitude Diagrams (CMDs) of several stellar sub-clusters identified in the region, and we derive their basic evolution parameters. We find that NGC 346 experienced different star formation regimes, including a dominant and focused "high density mode", with the sub-clusters hosting both pre-main sequence (PMS) and upper main sequence (UMS) stars, and a diffuse "low density mode", as indicated by the presence of low-mass PMS sub-clusters. Quantitatively, the star formation in the oldest sub-clusters started about 6 Myr ago with remarkable synchronization, it continued at high rate (up to 2 \times 10^{-5} Mo yr^{-1} pc^{-2}) for about 3 Myr and is now progressing at a lower rate. Interestingly, sub-clusters mainly composed by low mass PMS stars seem to experience now the first episode of star formation, following multi-seeded spatial patterns instead of resulting from a coherent trigger. Two speculative scenarios are put forth to explain the deficiency of UMS stars: the first invokes under-threshold conditions of the parent gas; the second speculates that the initial mass function (IMF) is a function of time, with the youngest sub-clusters not having had sufficient time to form more massive stars.Comment: 17 pages. Accepted for publication in A

    Chemical composition and origin of nebulae around Luminous Blue Variables

    Get PDF
    We use the analysis of the heavy element abundances (C, N, O, S) in circumstellar nebulae around Luminous Blue Variables to infer the evolutionary phase in which the material has been ejected. (1) We discuss the different effects that may have changed the gas composition of the nebula since it was ejected (2) We calculate the expected abundance changes at the stellar surface due to envelope convection in the red supergiant phase. If the observed LBV nebulae are ejected during the RSG phase, the abundances of the LBV nebulae require a significantly smaller amount of mass to be lost than assumed in evolutionary models. (3) We calculate the changes in the surface composition during the main sequence phase by rotation induced mixing. If the nebulae are ejected at the end of the MS-phase, the abundances in LBV nebulae are compatible with mixing times between 5 x 10^6 and 1 x 10^7 years. The existence of ON stars supports this scenario. (4) The predicted He/H ratio in the nebulae are significantly smaller than the current observed photospheric values of their central stars. Combining various arguments we show that the LBV nebulae are ejected during the blue SG phase and that the stars have not gone through a RSG phase. The chemical enhancements are due to rotation induced mixing, and the ejection is possibly triggered by near-critical rotation. During the ejection, the outflow was optically thick, which resulted in a large effective radius and a low effective temperature. This also explains the observed properties of LBV dust.Comment: 18 pages, 4 figures, to be published in The Astrophysical Journal, April 20, 200

    Mean age gradient and asymmetry in the star formation history of the Small Magellanic Cloud

    Get PDF
    We derive the star formation history in four regions of the Small Magellanic Cloud (SMC) using the deepest VI color-magnitude diagrams (CMDs) ever obtained for this galaxy. The images were obtained with the Advanced Camera for Surveys onboard the Hubble Space Telescope and are located at projected distances of 0.5-2 degrees from the SMC center, probing the main body and the wing of the galaxy. We derived the star-formation histories (SFH) of the four fields using two independent procedures to fit synthetic CMDs to the data. We compare the SFHs derived here with our earlier results for the SMC bar to create a deep pencil-beam survey of the global history of the central SMC. We find in all the six fields observed with HST a slow star formation pace from 13 to 5-7 Gyr ago, followed by a ~ 2-3 times higher activity. This is remarkable because dynamical models do not predict a strong influence of either the LMC or the Milky Way (MW) at that time. The level of the intermediate-age SFR enhancement systematically increases towards the center, resulting in a gradient in the mean age of the population, with the bar fields being systematically younger than the outer ones. Star formation over the most recent 500 Myr is strongly concentrated in the bar, the only exception being the area of the SMC wing. The strong current activity of the latter is likely driven by interaction with the LMC. At a given age, there is no significant difference in metallicity between the inner and outer fields, implying that metals are well mixed throughout the SMC. The age-metallicity relations we infer from our best fitting models are monotonically increasing with time, with no evidence of dips. This may argue against the major merger scenario proposed by Tsujimoto and Bekki 2009, although a minor merger cannot be ruled out.Comment: 30 pages, 16 figures, accepted for publication in Ap

    The Low End of the Initial Mass Function in Young LMC Clusters: I. The Case of R136

    Get PDF
    We report the result of a study in which we have used very deep broadband V and I WFPC2 images of the R136 cluster in the Large Magellanic Cloud from the HST archive, to sample the luminosity function below the detection limit of 2.8 Mo previously reached. In these new deeper images, we detect stars down to a limiting magnitude of m_F555W = 24.7 (~ 1 magnitude deeper than previous works), and identify a population of red stars evenly distributed in the surrounding of the R136 cluster. A comparison of our color-magnitude diagram with recentely computed evolutionary tracks indicates that these red objects are pre-main sequence stars in the mass range 0.6 - 3 Mo. We construct the initial mass function (IMF) in the 1.35 - 6.5 Mo range and find that, after correcting for incompleteness, the IMF shows a definite flattening below ~ 2 Mo. We discuss the implications of this result for the R136 cluster and for our understanding of starburst galaxies formation and evolution in general.Comment: 29 pages, 6 tables, 11 figures included + 3 external files, accepted for publication by Ap.

    Star formation history in the SMC: the case of NGC602

    Get PDF
    Deep HST/ACS photometry of the young cluster NGC 602, located in the remote low density "wing" of the Small Magellanic Cloud, reveals numerous pre-main sequence stars as well as young stars on the main sequence. The resolved stellar content thus provides a basis for studying the star formation history into recent times and constraining several stellar population properties, such as the present day mass function, the initial mass function and the binary fraction. To better characterize the pre-main sequence population, we present a new set of model stellar evolutionary tracks for this evolutionary phase with metallicity appropriate for the Small Magellanic Cloud (Z = 0.004). We use a stellar population synthesis code, which takes into account a full range of stellar evolution phases to derive our best estimate for the star formation history in the region by comparing observed and synthetic color-magnitude diagrams. The derived present day mass function for NGC 602 is consistent with that resulting from the synthetic diagrams. The star formation rate in the region has increased with time on a scale of tens of Myr, reaching 0.30.7×103Myr10.3-0.7 \times 10^{-3} M_\odot yr^{-1} in the last 2.5 Myr, comparable to what is found in Galactic OB associations. Star formation is most complete in the main cluster but continues at moderate levels in the gas-rich periphery of the nebula.Comment: 24 pages. Accepted for publication in A

    The massive star population of the Virgo Cluster galaxy NGC 4535

    Full text link
    We analyzed the massive star population of the Virgo Cluster galaxy NGC 4535 using archival Hubble Space Telescope Wide Field Planetary Camera 2 images in filters F555W and F814W, equivalent to Johnson V and Kron-Cousins I. We performed high precision point spread function fitting photometry of 24353 sources including 3762 candidate blue supergiants, 841 candidate yellow supergiants and 370 candidate red supergiants. We estimated the ratio of blue to red supergiants as a decreasing function of galactocentric radius. Using Modules for Experiments in Stellar Astrophysics isochrones at solar metallicity, we defined the luminosity function and estimated the star formation history of the galaxy over the last 60 Myrs. We conducted a variability search in the V and I filters using three variability indexes: the median absolute deviation, the interquartile range and the inverse von-Neumann ratio. This analysis yielded 120 new variable candidates with absolute magnitudes ranging from MV_{V} = -4 to -11 mag. We used the MESA evolutionary tracks at solar metallicity, to classify the variables based on their absolute magnitude and their position on the color-magnitude diagram. Among the new candidate variable sources are eight candidate variable red supergiants, three candidate variable yellow supergiants and one candidate luminous blue variable, which we suggest for follow-up observations.Comment: Accepted by A&A, 7 pages, 7 Tables, 53 figure
    corecore