716 research outputs found

    High speed commercial transport fuels considerations and research needs

    Get PDF
    NASA is currently evaluating the potential of incorporating High Speed Civil Transport (HSCT) aircraft in the commercial fleet in the beginning of the 21st century. NASA sponsored HSCT enabling studies currently underway with airframers and engine manufacturers, are addressing a broad range of technical, environmental, economic, and related issues. Supersonic cruise speeds for these aircraft were originally focused in the Mach 2 to 5 range. At these flight speeds, both jet fuels and liquid methane were considered potential fuel candidates. For the year 2000 to 2010, cruise Mach numbers of 2 to 3+ are projected for aircraft fuel with thermally stable liquid jet fuels. For 2015 and beyond, liquid methane fueled aircraft cruising at Mach numbers of 4+ may be viable candidates. Operation at supersonic speeds will be much more severe than those encountered at subsonic flight. One of the most critical problems is the potential deterioration of the fuel due to the high temperature environment. HSCT fuels will not only be required to provide the energy necessary for flight, but will also be subject to aerodynamic heating and, will be required to serve as the primary heat sink for cooling the engine and airframe. To define fuel problems for high speed flight, a fuels workshop was conducted at NASA Lewis Research Center. The purpose of the workshop was to gather experts on aviation fuels, airframe fuel systems, airport infrastructure, and combustion systems to discuss high speed fuel alternatives, fuel supply scenarios, increased thermal stability approaches and measurements, safety considerations, and to provide directional guidance for future R and D efforts. Subsequent follow-up studies defined airport infrastructure impacts of high speed fuel candidates. The results of these activities are summarized. In addition, an initial case study using modified in-house refinery simulation model Gordian code (1) is briefly discussed. This code can be used to simulate different types of refineries, emphasizing jet fuel production and relative cost factors

    Modelling the energy dependencies of high-frequency QPO in black hole X-ray binaries

    Full text link
    We model energy dependencies of the quasi periodic oscillations (QPO) in the model of disc epicyclic motions, with X-ray modulation caused by varying relativistic effects. The model was proposed to explain the high frequency QPO observed in X-ray binaries. We consider two specific scenarios for the geometry of accretion flow and spectral formation. Firstly, a standard cold accretion disc with an active X-ray emitting corona is assumed to oscillate. Secondly, only a hot X-ray emitting accretion flow oscillates, while the cold disc is absent at the QPO radius. We find that the QPO spectra are generally similar to the spectrum of radiation emitted at the QPO radius, and they are broadened by the relativistic effects. In particular, the QPO spectrum contains the disc component in the oscillating disc with a corona scenario. We also review the available data on energy dependencies of high frequency QPO, and we point out that they appear to lack the disc component in their energy spectra. This would suggest the hot flow geometry in the spectral states when high frequency QPO are observed.Comment: 8 pages, accepted for publication in MNRA

    Antiangiogenic properties of a nutrient mixture in a model of hemangioma

    No full text
    The pathogenesis of hemangiomas is still largely unknown and the current therapy, such as systemic corticosteroid, vincristine, and interferon-alpha, is toxic and remains unsatisfactory. A nutrient mixture (NM) containing lysine, proline, ascorbic acid and green tea extract has shown significant anti-angiogenic and anti-tumor effect against a number of cancer cell lines. Aim: Using a mouse hemangioendothelioma model, we investigated the efficacy of NM. We also tested the effect of NM in vitro, evaluating cell viability, MMP secretion, invasion, morphology and apoptosis. Methods: Athymic nude mice, 5–6 weeks old, were inoculated with 3 x106 EOMA cells subcutaneously and randomly divided into two groups; group A was fed a regular diet and group B — a regular diet supplemented with 0.5% NM. Four weeks later, the mice were sacrificed and their tumors were excised, weighed and processed for histology. We also tested the effect of NM in vitro. Results: NM inhibited the growth of tumors by 50%. In vitro, NM exhibited dose response cytotoxicity with 10%, 30% and 55% at 10, 100 and 1000 μg/ml. Invasion through Matrigel was inhibited at 50, 100 and 500 μg/ml by 25%, 30% and 100% respectively. NM induced dose-dependent apoptosis of EOMA cells. Conclusions: These results suggest that NM may have therapeutic potential in treating infantile hemangioendotheliomas and, perhaps, other cutaneous vascular tumors

    Repression of matrix metalloproteinases and inhibition of cell invasion by a nutrient mixture, containing ascorbic acid, lysine, proline, and green tea extract on human fanconi anemia fibroblast cell lines

    No full text
    Aim: Fanconi Anemia, an autosomal recessive disorder, is characterized by chromosomal abnormality leading to birth defects, progressive bone marrow failure, and a high probability of developing malignancy at an early age. Head and neck squamous cell carcinoma and myeloid leukemia are the major causes of cancer related morbidity and mortality in Fanconi anemia patients. Me­thods: We investigated the effect of a nutrient mixture on Fanconi Anemia human fibroblast cell lines FA‐A:PD20 and FA‐A:PD220 on matrix metalloproteinase expression, invasion, cell proliferation, morphology and apoptosis. The cell lines were grown in a modified Dulbecco’s Eagle medium and at near confluence were treated with the nutrient mixture at increasing doses: 0; 10; 50; 100; 500; 1000 µg/ml. The cells were also treated with PMA to induce MMP-9 expression. Results: Zymography demonstrated MMP‐2 and PMA‐induced MMP‐9 activity. The nutrient mixture inhibited expression of both, MMP-2 and MMP-9, in a dose dependent manner with virtually total inhibition observed at 500 µg/ml. Matrigel invasion was inhibited in both cells lines; with 100% inhibition for FA-A:PD20 at 500 µg/ml and 100% inhibition of FA-A:P220 cells at 100 µg/ml. H&E staining did not indicate any change in cell morphology and causes apoptosis at higher doses. Conclusion: Our data demonstrated that the nutrient mixture inhibited matrix metalloproteinase expression, invasion and induced apoptosis, the important parameters for cancer prevention. The results suggest that the nutrient mixture may have therapeutic potential in Fanconi Anemia associated neoplasia

    Nutrient mixture inhibits in vitro and in vivo growth of human acute promyelocytic leukemia HL-60 cells

    No full text
    Aim: Untreated acute promyelocytic leukemia is the most malignant form of acute leukemias, with median survival of less than one month. We investigated in vitro and in vivo synergistic effects of a nutrient mixture (NM) containing ascorbic acid, lysine, proline, and green tea extract, on acute promyelocytic leukemia HL-60 cells. Methods: In vitro, the HL-60 cells were cultured and exposed to NM at doses 0–1000 μg/ml. Cell viability was assessed by Trypan blue dye exclusion test, matrix metalloproteinases (MMP) expression by gelatinase zymography, invasion through Matrigel and apoptosis by live green Poly Caspase Detection Kit. In vivo studies were carried out in athymic nude mice subcutaneously inoculated with HL-60 cells. Results: In vitro, NM exhibited a dose dependent reduction in cells viability. Zymography revealed matrix MMP-2 and phorbol 12-myristate 13-acetate induced MMP-9 expression. NM inhibited expression of both MMP in a dose dependent manner. Similar step-wise reduction in the Matrigel invasion by HL-60 cells was also observed by this combination with incremental doses. Gradually increasing doses of NM induced significant apoptosis in HL-60 cells. In vivo, NM inhibited tumor growth by 50%. Conclusion: The results indicate that NM significantly suppresses tumor growth, decreases cell viability, inhibits MMP expression, Matrigel invasion and induces apoptosis in HL-60 cells

    In vivo and in vitro antitumor effects of nutrient mixture in murine leukemia cell line P-388

    No full text
    Aim: Leukemia is characterized by uncontrolled marrow cell proliferation and metastatic foci. We investigated the antitumor potential of a nutrient mixture on malignant leukemia P-388 cells. Methods: The nutrient mixture containing lysine, proline, ascorbic acid, green tea extract and other nutrients is formulated to target key pathways in cancer progression. The cells were treated with the mixture, and tested at doses 0, 10, 50, 100, 500 and 1000 μg/ml in triplicates. The effects were evaluated by cell proliferation, Matrigel invasion, cell morphology and apoptosis. The in vivo effect was measured in male nude mice (n = 12) inoculated with P-388 cells. After randomly dividing in two groups, each group was fed regular and the nutrient mixture supplemented diet and the mice were sacrificed after four weeks. Results: The nutrient mixture decreased P-388 cell proliferation at 500 and 1000 μg/ml. Only 10% cells were viable at 1000 μg/ml. Matrigel invasion was significantly inhibited in a dose dependent manner with virtually total inhibition at 1000 μg/ml. Cell morphological features notably changed with dose increase to 1000 μg/ml. Analysis of apoptotic cells on live green caspase kit exhibited gradual increase with the increasing dose of the nutrient mixture, and at 1000 μg/ml 92% of P-388 cells were in late apoptosis. Tumors in the group of mice supplemented with the nutrient mixture had 50% lower weight compared to the tumors in control group (p = 0.0105). Histopathologically, both the groups of tumors were similar, yet size of tumors in the group treated with the nutrient mixture was considerably smaller. Conclusion: These results indicate that the nutrient mixture exhibited significant action against multiple targets in P-388 leukemia and may have potential in human leukemia

    In vivo and In vitro effect of a nutrient mixture on human hepatocarcinoma cell line SK-HEP-1

    No full text
    Long-term survival of patients with hepatocellular carcinoma (HCC), a common cancer worldwide, remains poor, due to metastasis and recurrence. Aim: To investigate the effect of a novel nutrient mixture (NM) containing ascorbic acid, lysine, proline, and green tea extract on human HCC cell line Sk-Hep-1 In vivo and In vitro. Methods: After one week of isolation, 5–6 week old male athymic nude mice were inoculated with 3 x 106 SK-Hep-1 cells subcutaneously and randomly divided into two groups; group A was fed a regular diet and group B a regular diet supplemented with 0.5% NM. Four weeks later, the mice were sacrificed and their tumors were excised, weighed and processed for histology. We also tested the effect of NM In vitro on SK-Hep-1 cells, measuring cell proliferation by MTT assay, invasion through Matrigel, apoptosis by green caspase detection kit, MMP secretion by zymography, and morphology by H&E staining. Results: NM inhibited tumor weight and burden of SK-Hep-1 xenografts by 42% and 33% respectively. In vitro, NM exhibited 33% toxicity over the control at 500 and 1000 μg/ml concentration. Zymography demonstrated MMP-2 and MMP-9 secretion which was inhibited by NM in a dose dependent fashion, with virtual total inhibition at 1000 μg/ml. Invasion through Matrigel was inhibited at 100, 500 and 1000 μg/ml by 53%, 83% and 100% respectively. NM induced slight apoptosis at 100 μg/ml, and profound apoptosis at 500 μg/ml and 1000 μg/ml concentration. Conclusions: These results suggest that NM has therapeutic potential in treatment of HCC

    Ascorbate depletion increases growth and metastasis of melanoma cells in vitamin C deficient mice

    No full text
    Aim: Our main objective was to determine the effect of ascorbate supplementation in mice unable to synthesize ascorbic acid (gulo KO) when challenged with murine B16FO cancer cells. Methods: Gulo KO female mice 36–40 weeks of age were deprived of or maintained on ascorbate in food and water for 4 weeks prior to subcutaneous injection of 2.5×106 B16FO murine melanoma cells in the right flank of mice. A control group of wild type mice were also injected with the melanoma cells and maintained on a regular murine diet. Mice were continued on their respective diets for another 2 weeks after injection. The mice were then sacrificed, blood was drawn and their tumors were measured, excised and processed for histology. Results: Mean weight of animals decreased significantly (30%, p < 0.0001) in the ascorbate-restricted group but increased slightly, but insignificantly, in the ascorbate-supplemented group. The mean tumor weight in ascorbate supplemented mice was significantly reduced (by 64%, p = 0.004) compared to tumor weight in ascorbate-deprived gulo mice. The mean tumor weight of wild type mice did not differ significantly from the ascorbate-supplemented mice. Gulo KO mice supplemented with ascorbate developed smaller tumors with more collagen encapsulation and fibrous capsule interdigitation, while gulo KO mice deprived of ascorbate hosted large tumors with poorly defined borders, showing more necrosis and mitosis. Ascorbate supplementation of gulo KO mice resulted in profoundly decreased serum inflammatory cytokine IL-6 (90% decrease, p = 0.04) and IL-1β (62% decrease) compared to the levels in gulo KO mice deprived of ascorbate. Conclusion: Ascorbate supplementation modulated tumor growth and inflammatory cytokine secretion as well as enhanced encapsulation of tumors in scorbutic mice

    Association between serum heat shock proteins and gamma-delta t cells—an outdated clue or a new direction in searching for an anticancer strategy? A short report

    Get PDF
    HSPs demonstrate a strong association with gamma-delta (γδ) T cells. Most of the studies regarding interactions between the parameters were conducted in the 1990s. Despite promising results, the concept of targeting γδ T cells by HSPs seems to be a forgotten direction due to potent non-peptidic phosphoantigens rather than HSPs have been found to be the essential stimulatory components for human γδ cells. Currently, with greater knowledge of lymphocyte diversity, and more accurate diagnostic methods, we decided to study the correlation once again in the neoplas-tic condition. Twenty-one children with newly diagnosed acute lymphoblastic leukaemia (ALL) were enrolled on the study. Serum HSP90 concentrations were evaluated by an enzyme-linked immunosorbent assay (ELISA), subsets of γδ T cells (CD3+ γδ, CD3+ γδ HLA/DR+, CD4+ γδ and CD8+ γδ) by flow cytometry. We have shown statistically relevant correlations between serum HSP90 and CD3+ HLA/DR+ γδ T cells in paediatric ALL at diagnosis (R = 0.53, p &lt; 0.05), but not after induction chemotherapy. We also have demonstrated decreased levels of both serum HSP90 and CD3+ HLA/DR+ γδ T cells before treatment, which may indirectly indicate dose-dependent unknown interaction between the parameters. The results of our study may be a good introduction to research on the association between HSPs and CD3+ HLA/DR+ γδ T cells, which could be an interesting direction for the development of anti-cancer strategies, not just for childhood ALL
    corecore