710 research outputs found

    Three resilient megastructures by Pier Luigi Nervi

    Get PDF
    Resilience, as the ability of a structure to withstand threats and continue to function, it is normally related to durability and performance to accepted standards over time. The resilience of a structure can be threatened by poor design, changes in the public's perception of style, the potential for a change-in-use and structural attack; catastrophic events such as fire, explosion or impact are usually considered the main threats for Resilience. In the contemporary built environment Resilience is considered increasingly important; it has, in fact, become one of the major design issues, especially for large, iconic or public and prominent structures: this has not always been the case. Following the Second World War, building designers faced the necessity to conceive projects within severe financial constraints, hence the proliferation of a low quality and limited life-span structures; buildings which were designed to be replaceable, cheap and perhaps anonymous. This was thought to be an effec-tive answer to quickly accommodate the large number of people moving towards the urban environment partly destroyed by the WWII. These very buildings now constitute the backbone of our urban scenery and although some still function adequately, many are perfect examples of structures which exhibit a lack of re-silience. Fortunately, there were a few designers who refused this post-war tendency and attempted to design lasting structures of quality: most of them were engineers. This is not a coincidence, engineers had less to do with the issue of providing residential accommodations and more with the erection of large structures which necessitated a higher quality control on materials and technologies: Pier Luigi Nervi was one of them. This work considers three large structures designed and built fifty years ago,in 1961, by the Italian engineer. The structures are the Bus Station at the George Washington Bridge in New York (USA); The Burgo Paper Mill in Mantua (Italy); and the Palace of Labour in Turin (Italy). All of these buildings are hybrid structures (concrete and steel), an unusual choice for Nervi that perhaps reects the design climate at the time; These buildings reacted quite differently to the events that have occurred over the past half century. One of the key factors to achieve resilience it is considered to be the quality of the buildings, which includes their ability to perform maintenance. The lack of which for whatever reason, this paper aims to demonstrate, will inevitably result in a weak performance in terms of resilience on the long run

    High homogeneity solenoidal magnet for cesium frequency standard

    Get PDF
    In Cs frequency standards a zone of highly uniform magnetic flux density, lower in value of 0.1 T, is required. The magnetic homogeneity value is tied to the overall accuracy of the standard and, for an accuracy of 10-14, a design value 1 p.p.m. is required. For this purpose a resistive solenoid 700 mm long with a bore radius of 32.5 mm has been designed and built. This paper reports the design process, the measurements on the manufactured magnet and the shimming strategy used to reach the homogeneity target

    Phase Stability and Fast Ion Conductivity in the Hexagonal LiBH4-LiBr-LiCl Solid Solution

    Get PDF
    This study shows a flexible system that offers promising candidates for Li-based solid-state electrolytes. The Br− substitution for BH4 − stabilizes the hexagonal structure of LiBH4 at room temperature (RT), whereas Cl− is soluble only at higher temperatures. Incorporation of chloride in a hexagonal solid solution leads to an increase in the energy density of the system. For the first time, a stable hexagonal solid solution of LiBH4 containing both Cl− and Br-halide anions has been obtained at RT. The LiBH4−LiBr−LiCl ternary phase diagram has been determined at RT by X-ray diffraction coupled with a Rietveld refinement. A solubility of up to 30% of Cl− in the solid solution has been established. The effect of halogenation on the Li-ion conductivity and electrochemical stability has been investigated by electrochemical impedance spectroscopy and cyclic voltammetry. Considering the ternary samples, h-Li(BH4)0.7(Br)0.2(Cl)0.1 composition showed the highest value for conductivity (1.3 × 10−5 S/cm at 30 °C), which is about 3 orders of magnitude higher than that for pure LiBH4 in the orthorhombic structure. The values of Li-ion conductivity at RT depend only on the BH4 − content in the solid solution, suggesting that the Br/Cl ratio does not affect the defect formation energy in the structure. Chloride anion substitution in the hexagonal structure increases the activation energy, moving from about 0.45 eV for samples without Cl− ions in the structure up to about 0.63 eV for h-Li(BH4)0.6(Br)0.2(Cl)0.2 compositions, according to the Meyer−Neldel rule. In addition to increasing Li-ion conductivity, the halogenation also increases the thermal stability of the system. Unlike for the Liion conductivity, the Br/Cl ratio influences the electrochemical stability: a wide oxidative window of 4.04 V versus Li+/Li is reached in the Li−Br system while further addition of Cl is a trade-off between oxidative stability and weight reduction. The halogenation allows both binary and ternary systems operating below 120 °C, thus suggesting possible applications of these fast ion conductors as solid-state electrolytes in Li-ion batteries

    Detection of lithium plating in li-ion cell anodes using realistic automotive fast-charge profiles

    Get PDF
    The widespread use of electric vehicles is nowadays limited by the “range anxiety” of the customers. The drivers’ main concerns are related to the kilometric range of the vehicle and to the charging time. An optimized fast-charge profile can help to decrease the charging time, without degrading the cell performance and reducing the cycle life. One of the main reasons for battery capacity fade is linked to the Lithium plating phenomenon. This work investigates two methodologies, i.e., three-electrode cell measurement and internal resistance evolution during charging, for detecting the Lithium plating conditions. From this preliminary analysis, it was possible to develop new Multi-Stage Constant-Current profiles, designed to improve the performance in terms of charging time and cells capacity retention with respect to a reference profile. Four new profiles were tested and compared to a reference. The results coming from the new profiles demonstrate a simultaneous improvement in terms of charging time and cycling life, showing the reliability of the implemented methodology in preventing Lithium plating
    corecore