36,709 research outputs found

    Zambia: 'One Zambia, One Nation, Many Languages'

    Get PDF

    Central, East and Southern African Languages

    Get PDF

    Noncooperative algorithms in self-assembly

    Full text link
    We show the first non-trivial positive algorithmic results (i.e. programs whose output is larger than their size), in a model of self-assembly that has so far resisted many attempts of formal analysis or programming: the planar non-cooperative variant of Winfree's abstract Tile Assembly Model. This model has been the center of several open problems and conjectures in the last fifteen years, and the first fully general results on its computational power were only proven recently (SODA 2014). These results, as well as ours, exemplify the intricate connections between computation and geometry that can occur in self-assembly. In this model, tiles can stick to an existing assembly as soon as one of their sides matches the existing assembly. This feature contrasts with the general cooperative model, where it can be required that tiles match on \emph{several} of their sides in order to bind. In order to describe our algorithms, we also introduce a generalization of regular expressions called Baggins expressions. Finally, we compare this model to other automata-theoretic models.Comment: A few bug fixes and typo correction

    Diffeomorphic Demons using Normalised Mutual Information, Evaluation on Multi-Modal Brain MR Images

    Get PDF
    The demons algorithm is a fast non-parametric non-rigid registration method. In recent years great efforts have been made to improve the approach; the state of the art version yields symmetric inverse-consistent large-deformation diffeomorphisms. However, only limited work has explored inter-modal similarity metrics, with no practical evaluation on multi-modality data. We present a diffeomorphic demons implementation using the analytical gradient of Normalised Mutual Information (NMI) in a conjugate gradient optimiser. We report the first qualitative and quantitative assessment of the demons for inter-modal registration. Experiments to spatially normalise real MR images, and to recover simulated deformation fields, demonstrate (i) similar accuracy from NMI-demons and classical demons when the latter may be used, and (ii) similar accuracy for NMI-demons on T1w-T1w and T1w-T2w registration, demonstrating its potential in multi-modal scenarios

    The nucleoside analog GS-441524 strongly inhibits feline infectious peritonitis (FIP) virus in tissue culture and experimental cat infection studies.

    Get PDF
    Feline infectious peritonitis (FIP) is a common and highly lethal coronavirus disease of domestic cats. Recent studies of diseases caused by several RNA viruses in people and other species indicate that antiviral therapy may be effective against FIP in cats. The small molecule nucleoside analog GS-441524 is a molecular precursor to a pharmacologically active nucleoside triphosphate molecule. These analogs act as an alternative substrate and RNA-chain terminator of viral RNA dependent RNA polymerase. We determined that GS-441524 was non-toxic in feline cells at concentrations as high as 100 uM and effectively inhibited FIPV replication in cultured CRFK cells and in naturally infected feline peritoneal macrophages at concentrations as low as 1 uM. We determined the pharmacokinetics of GS-441524 in cats in vivo and established a dosage that would sustain effective blood levels for 24 h. In an experimental FIPV infection of cats, GS-441524 treatment caused a rapid reversal of disease signs and return to normality with as little as two weeks of treatment in 10/10 cats and with no apparent toxicity

    Complex structures in the acquisition of Greek: A GP and OT approach

    Get PDF

    Computational Study of Second- and Third-Harmonic Generation in Periodically Patterned 2D-3D Heteromaterials

    Get PDF
    Remarkable optical and electrical properties of graphene and other two-dimensional (2D) materials provide significant potential for novel optoelectronic applications and devices, many of which depend on nonlinear optical effects in these 2D materials. In this paper we use a theoretical and computational formalism we have recently introduced to efficiently and accurately compute the linear and nonlinear optical response of nanostructured 2D materials embedded in periodic structures containing regular three-dimensional (3D) materials, such as diffraction gratings or periodic metamaterials. Thus, we use the proposed method to demonstrate enhanced nonlinear optical interactions in periodically patterned photonic nanostructures via resonant excitation of phase-matched nonlinear waveguide modes, enhanced nonlinearity of nanostructures containing graphene and other 2D nanomaterials, such as WS2, and multi-continua Fano resonances for increasing the nonlinear efficiency of hybrid 2D-3D photonic heteromaterials

    Voters' resources and electoral participation in Latin America

    Get PDF
    Previous studies of electoral participation in Latin America have focused on the political and institutional factors that influence country differences in the aggregate level of turnout. This paper provides a theoretical and empirical examination of the individual-level socio-economic factors that have an impact on citizens’ propensity to vote. We assess the relevance of voters’ resources to explain electoral participation in Latin America. We demonstrate that the demographic characteristics of voters (age and education) are strong predictors of electoral participation in Latin America. Our analysis reveals that the individual objective characteristics of the voters explain much more than individual subjective motivations and mobilization networks

    Theoretical and computational analysis of second- and third-harmonic generation in periodically patterned graphene and transition-metal dichalcogenide monolayers

    Get PDF
    Remarkable optical and electrical properties of two-dimensional (2D) materials, such as graphene and transition-metal dichalcogenide (TMDC) monolayers, offer vast technological potential for novel and improved optoelectronic nanodevices, many of which rely on nonlinear optical effects in these 2D materials. This paper introduces a highly effective numerical method for efficient and accurate description of linear and nonlinear optical effects in nanostructured 2D materials embedded in periodic photonic structures containing regular three-dimensional (3D) optical materials, such as diffraction gratings and periodic metamaterials. The proposed method builds upon the rigorous coupled-wave analysis and incorporates the nonlinear optical response of 2D materials by means of modified electromagnetic boundary conditions. This allows one to reduce the mathematical framework of the numerical method to an inhomogeneous scattering matrix formalism, which makes it more accurate and efficient than previously used approaches. An overview of linear and nonlinear optical properties of graphene and TMDC monolayers is given and the various features of the corresponding optical spectra are explored numerically and discussed. To illustrate the versatility of our numerical method, we use it to investigate the linear and nonlinear multiresonant optical response of 2D-3D heteromaterials for enhanced and tunable second- and third-harmonic generation. In particular, by employing a structured 2D material optically coupled to a patterned slab waveguide, we study the interplay between geometric resonances associated to guiding modes of periodically patterned slab waveguides and plasmon or exciton resonances of 2D materials
    • 

    corecore