272 research outputs found
Cyclic motion and inversion of surface flow direction in a dense polymer brush under shear
Using molecular simulations, we study the properties of a polymer brush in
contact with an explicit solvent under Couette and Poiseuille flow. The solvent
is comprised of chemically identical chains. We present evidence that
individual, unentangled chains in the dense brush exhibit cyclic, tumbling
motion and non-Gaussian fluctuations of the molecular orientations similar to
the behaviour of isolated tethered chains in shear flow. The collective
molecular motion gives rise to an inversion of hydrodynamic flow direction in
the vicinity of the brush-coated surface. Utilising Couette and Poiseuille
flow, we investigate to what extend the effect of a brush-coated surface can be
described by a Navier slip condition.Comment: 6 pages, 6 figures, submitted for publicatio
Statics and dynamics of a cylindrical droplet under an external body force
We study the rolling and sliding motion of droplets on a corrugated substrate
by Molecular Dynamics simulations. Droplets are driven by an external body
force (gravity) and we investigate the velocity profile and dissipation
mechanisms in the steady state. The cylindrical geometry allows us to consider
a large range of droplet sizes. The velocity of small droplets with a large
contact angle is dominated by the friction at the substrate and the velocity of
the center of mass scales like the square root of the droplet size. For large
droplets or small contact angles, however, viscous dissipation of the flow
inside the volume of the droplet dictates the center of mass velocity that
scales linearly with the size. We derive a simple analytical description
predicting the dependence of the center of mass velocity on droplet size and
the slip length at the substrate. In the limit of vanishing droplet velocity we
quantitatively compare our simulation results to the predictions and good
agreement without adjustable parameters is found.Comment: Submitted to the Journal of Chemical Physic
Hydraulic engineering legends Listed on the Eiffel Tower
While the Eiffel Tower has become a landmark of Paris and France, few know about the names of 72 scientists engraved around the first floor. Herein, the names of 14 hydraulic engineers and scholars are reviewed and their selection is discussed. It is shown that most were leading engineers and lecturers during the French Revolution and early 19th century, and Gustave Eiffel's selection highlighted the influence of leading engineers on the French Society
The Dynamics of Liquid Drops and their Interaction with Solids of Varying Wettabilites
Microdrop impact and spreading phenomena are explored as an interface
formation process using a recently developed computational framework. The
accuracy of the results obtained from this framework for the simulation of high
deformation free-surface flows is confirmed by a comparison with previous
numerical studies for the large amplitude oscillations of free liquid drops.
Our code's ability to produce high resolution benchmark calculations for
dynamic wetting flows is then demonstrated by simulating microdrop impact and
spreading on surfaces of greatly differing wettability. The simulations allow
one to see features of the process which go beyond the resolution available to
experimental analysis. Strong interfacial effects which are observed at the
microfluidic scale are then harnessed by designing surfaces of varying
wettability that allow new methods of flow control to be developed
Measurement of Newtonian fluid slip using a torsional ultrasonic oscillator
The composite torsional ultrasonic oscillator, a versatile experimental
system, can be used to investigate slip of Newtonian fluid at a smooth surface.
A rigorous analysis of slip-dependent damping for the oscillator is presented.
Initially, the phenomenon of finite surface slip and the slip length are
considered for a half-space of Newtonian fluid in contact with a smooth,
oscillating solid surface. Definitions are revisited and clarified in light of
inconsistencies in the literature. We point out that, in general oscillating
flows, Navier's slip length b is a complex number. An intuitive velocity
discontinuity parameter of unrestricted phase is used to describe the effect of
slip on measurement of viscous shear damping. The analysis is applied to the
composite oscillator and preliminary experimental work for a 40 kHz oscillator
is presented. The Non-Slip Boundary Condition (NSBC) has been verified for a
hydrophobic surface in water to within ~60 nm of |b|=0 nm. Experiments were
carried out at shear rate amplitudes between 230 and 6800 /s, corresponding to
linear displacement amplitudes between 3.2 and 96 nm.Comment: Revised with minor edits for revie
Effective slip boundary conditions for flows over nanoscale chemical heterogeneities
We study slip boundary conditions for simple fluids at surfaces with
nanoscale chemical heterogeneities. Using a perturbative approach, we examine
the flow of a Newtonian fluid far from a surface described by a heterogeneous
Navier slip boundary condition. In the far-field, we obtain expressions for an
effective slip boundary condition in certain limiting cases. These expressions
are compared to numerical solutions which show they work well when applied in
the appropriate limits. The implications for experimental measurements and for
the design of surfaces that exhibit large slip lengths are discussed.Comment: 14 pages, 3 figure
Effect of Patterned Slip on Micro and Nanofluidic Flows
We consider the flow of a Newtonian fluid in a nano or microchannel with
walls that have patterned variations in slip length. We formulate a set of
equations to describe the effects on an incompressible Newtonian flow of small
variations in slip, and solve these equations for slow flows. We test these
equations using molecular dynamics simulations of flow between two walls which
have patterned variations in wettability. Good qualitative agreement and a
reasonable degree of quantitative agreement is found between the theory and the
molecular dynamics simulations. The results of both analyses show that
patterned wettability can be used to induce complex variations in flow. Finally
we discuss the implications of our results for the design of microfluidic
mixers using slip.Comment: 13 pages, 12 figures, final version for publicatio
Lattice Boltzmann simulations of apparent slip in hydrophobic microchannels
Various experiments have found a boundary slip in hydrophobic microchannel
flows, but a consistent understanding of the results is still lacking. While
Molecular Dynamics (MD) simulations cannot reach the low shear rates and large
system sizes of the experiments, it is often impossible to resolve the needed
details with macroscopic approaches. We model the interaction between
hydrophobic channel walls and a fluid by means of a multi-phase lattice
Boltzmann model. Our mesoscopic approach overcomes the limitations of MD
simulations and can reach the small flow velocities of known experiments. We
reproduce results from experiments at small Knudsen numbers and other
simulations, namely an increase of slip with increasing liquid-solid
interactions, the slip being independent of the flow velocity, and a decreasing
slip with increasing bulk pressure. Within our model we develop a semi-analytic
approximation of the dependence of the slip on the pressure.Comment: 7 pages, 4 figure
Equilibrium Simulation of the Slip Coefficient in Nanoscale Pores
Accurate prediction of interfacial slip in nanoscale channels is required by
many microfluidic applications. Existing hydrodynamic solutions based on
Maxwellian boundary conditions include an empirical parameter that depends on
material properties and pore dimensions. This paper presents a derivation of a
new expression for the slip coefficient that is not based on the assumptions
concerning the details of solid-fluid collisions and whose parameters are
obtainable from \textit{equilibrium} simulation. The results for the slip
coefficient and flow rates are in good agreement with non-equilibrium molecular
dynamics simulation.Comment: 11 pages, 4 figures, submitted to Phys Rev Let
Slip behavior in liquid films on surfaces of patterned wettability: Comparison between continuum and molecular dynamics simulations
We investigate the behavior of the slip length in Newtonian liquids subject
to planar shear bounded by substrates with mixed boundary conditions. The upper
wall, consisting of a homogenous surface of finite or vanishing slip, moves at
a constant speed parallel to a lower stationary wall, whose surface is
patterned with an array of stripes representing alternating regions of no-shear
and finite or no-slip. Velocity fields and effective slip lengths are computed
both from molecular dynamics (MD) simulations and solution of the Stokes
equation for flow configurations either parallel or perpendicular to the
stripes. Excellent agreement between the hydrodynamic and MD results is
obtained when the normalized width of the slip regions, , where is the (fluid) molecular diameter characterizing the
Lennard-Jones interaction. In this regime, the effective slip length increases
monotonically with to a saturation value. For and transverse flow configurations, the non-uniform interaction
potential at the lower wall constitutes a rough surface whose molecular scale
corrugations strongly reduce the effective slip length below the hydrodynamic
results. The translational symmetry for longitudinal flow eliminates the
influence of molecular scale roughness; however, the reduced molecular ordering
above the wetting regions of finite slip for small values of
increases the value of the effective slip length far above the hydrodynamic
predictions. The strong inverse correlation between the effective slip length
and the liquid structure factor representative of the first fluid layer near
the patterned wall illustrates the influence of molecular ordering effects on
slip in non-inertial flows.Comment: 12 pages, 10 figures Web reference added for animations:
http://www.egr.msu.edu/~priezjev/bubble/bubble.htm
- …