402 research outputs found

    5D Yang-Mills instantons from ABJM Monopoles

    Full text link
    In the presence of a background supergravity flux, N M2-branes will expand via the Myers effect into M5-branes wrapped on a fuzzy three-sphere. In previous work the fluctuations of the M2-branes were shown to be described by the five-dimensional Yang-Mills gauge theory associated to D4-branes. We show that the ABJM prescription for eleven-dimensional momentum in terms of magnetic flux lifts to an instanton flux of the effective five-dimensional Yang-Mills theory on the sphere, giving an M-theory interpretation for these instantons.Comment: 29 pages, Latex; v2: added references and a comment on the graviphoton coupling in section 5; v3: typos corrected and references adde

    Geometry of The Embedding of Supergravity Scalar Manifolds in D=11 and D=10

    Get PDF
    Several recent papers have made considerable progress in proving the existence of remarkable consistent Kaluza-Klein sphere reductions of D=10 and D=11 supergravities, to give gauged supergravities in lower dimensions. A proof of the consistency of the full gauged SO(8) reduction on S^7 from D=11 was given many years ago, but from a practical viewpoint a reduction to a smaller subset of the fields can be more manageable, for the purposes of lifting lower-dimensional solutions back to the higher dimension. The major complexity of the spherical reduction Ansatze comes from the spin-0 fields, and of these, it is the pseudoscalars that are the most difficult to handle. In this paper we address this problem in two cases. One arises in a truncation of SO(8) gauged supergravity in four dimensions to U(1)^4, where there are three pairs of dilatons and axions in the scalar sector. The other example involves the truncation of SO(6) gauged supergravity in D=5 to a subsector containing a scalar and a pseudoscalar field, with a potential that admits a second supersymmetric vacuum aside from the maximally-supersymmetric one. We briefly discuss the use of these emdedding Ansatze for the lifting of solutions back to the higher dimension.Comment: Latex, 24 pages, typos correcte

    Consistent SO(6) Reduction Of Type IIB Supergravity on S^5

    Get PDF
    Type IIB supergravity can be consistently truncated to the metric and the self-dual 5-form. We obtain the complete non-linear Kaluza-Klein S^5 reduction Ansatz for this theory, giving rise to gravity coupled to the fifteen Yang-Mills gauge fields of SO(6) and the twenty scalars of the coset SL(6,R)/SO(6). This provides a consistent embedding of this subsector of N=8, D=5 gauged supergravity in type IIB in D=10. We demonstrate that the self-duality of the 5-form plays a crucial role in the consistency of the reduction. We also discuss certain necessary conditions for a theory of gravity and an antisymmetric tensor in an arbitrary dimension D to admit a consistent sphere reduction, keeping all the massless fields. We find that it is only possible for D=11, with a 4-form field, and D=10, with a 5-form. Furthermore, in D=11 the full bosonic structure of eleven-dimensional supergravity is required, while in D=10 the 5-form must be self-dual. It is remarkable that just from the consistency requirement alone one would discover D=11 and type IIB supergravities, and that D=11 is an upper bound on the dimension.Comment: Latex, 14 pages, typos corrected and comments adde

    A String and M-theory Origin for the Salam-Sezgin Model

    Full text link
    An M/string-theory origin for the six-dimensional Salam-Sezgin chiral gauged supergravity is obtained, by embedding it as a consistent Pauli-type reduction of type I or heterotic supergravity on the non-compact hyperboloid H2,2{\cal H}^{2,2} times S1S^1. We can also obtain embeddings of larger, non-chiral, gauged supergravities in six dimensions, whose consistent truncation yields the Salam-Sezgin theory. The lift of the Salam-Sezgin (Minkowski)4×S2_4\times S^2 ground state to ten dimensions is asymptotic at large distances to the near-horizon geometry of the NS5-brane.Comment: Latex, 18 pages; minor correction

    Towards a Realization of the Condensed-Matter/Gravity Correspondence in String Theory via Consistent Abelian Truncation

    Full text link
    We present an embedding of the 3-dimensional relativistic Landau-Ginzburg model for condensed matter systems in an N=6\mathcal{N}=6, U(N)×U(N)U(N)\times U(N) Chern-Simons-matter theory (the ABJM model) by consistently truncating the latter to an abelian effective field theory encoding the collective dynamics of O(N){\cal O}(N) of the O(N2){\cal O}(N^2) modes. In fact, depending on the VEV on one of the ABJM scalars, a mass deformation parameter μ\mu and the Chern-Simons level number kk, our abelianization prescription allows us to interpolate between the abelian Higgs model with its usual multi-vortex solutions and a ϕ4\phi^4 theory. We sketch a simple condensed matter model that reproduces all the salient features of the abelianization. In this context, the abelianization can be interpreted as giving a dimensional reduction from four dimensions.Comment: 4 pages, revtex; reference added, typo corrected; added clarifying paragraphs at end of introduction and on pages 3-4. Version accepted to PR

    Dimensional Consistency Analysis in Complex Algebraic Models

    Get PDF
    Relations in complex algebraic models include numerous variables and parameter that capture the physical dimensions of the objects represented in models (such as "mass", or "volume" of an object). A model developer must ensure the semantic correctness of the model, which includes consistency across physical dimensions and their units of measure in the model relations. Such dimensional consistency analysis is the subject of the research described in this paper. We propose a new methodological framework for this type of analysis which comprises: - a two-level structure for representing knowledge about physical dimensions and units of measure; and - the dimensional analysis algorithm that uses this structured knowledge for the verification of consistency. The proposed methodology allows us to resolve issues related to handling complex non-decomposable units of measure and the situation when instances of the same physical dimension are associated with different physical quantities. We illustrate the proposed methodological framework using mathematical relations from a comprehensive environmental model developed at IIASA

    Correspondence principle for a brane in Minkowski space and vector mesons

    Full text link
    We consider a 3-brane of positive cosmological constant (de Sitter) in D-dimensional Minkowski space. We show that the Poincare algebra in the bulk yields a SO(4,2) algebra when restricted to the brane. In the limit of zero cosmological constant (flat brane), this algebra turns into the conformal algebra on the brane. We derive a correspondence principle for Minkowski space analogous to the AdS/CFT correspondence. We discuss explicitly the cases of scalar and gravitational fields. For a 3-brane of finite thickness in the transverse directions, we obtain a spectrum for vector gravitational perturbations which correspond to vector mesons. The spectrum agrees with the one obtained in truncated AdS space by de Teramond and Brodsky provided D=10 and the bulk mass scale M is of order the geometric mean of the Planck mass (Mˉ\bar M) on the brane and ΛQCD\Lambda_{QCD} (M(MˉΛQCD)1/2109M \sim (\bar M \Lambda_{QCD})^{1/2} \sim 10^9 GeV).Comment: 8 pages in two-column ReVTeX

    Non-extremal Charged Rotating Black Holes in Seven-Dimensional Gauged Supergravity

    Get PDF
    We obtain the solution for non-extremal charged rotating black holes in seven-dimensional gauged supergravity, in the case where the three rotation parameters are set equal. There are two independent charges, corresponding to gauge fields in the U(1)xU(1) abelian subgroup of the SO(5) gauge group. A new feature in these solutions, not seen previously in lower-dimensional examples, is that the first-order "odd-dimensional self-duality" equation for the 4-form field strength plays a non-trivial role. We also study the BPS limit of our solutions where the black holes become supersymmetric. Our results are of significance for the AdS_7/CFT_6 correspondence in M-theory.Comment: Latex, 12 pages, typos corrected and a reference adde

    Abelian-Higgs and Vortices from ABJM: towards a string realization of AdS/CMT

    Full text link
    We present ans\"{a}tze that reduce the mass-deformed ABJM model to gauged Abelian scalar theories, using the fuzzy sphere matrices GαG^\alpha. One such reduction gives a Toda system, for which we find a new type of nonabelian vortex. Another gives the standard Abelian-Higgs model, thereby allowing us to embed all the usual (multi-)vortex solutions of the latter into the ABJM model. By turning off the mass deformation at the level of the reduced model, we can also continuously deform to the massive ϕ4\phi^4 theory in the massless ABJM case. In this way we can embed the Landau-Ginzburg model into the AdS/CFT correspondence as a consistent truncation of ABJM. In this context, the mass deformation parameter μ\mu and a field VEV act as gg and gcg_c respectively, leading to a well-motivated AdS/CMT construction from string theory. To further this particular point, we propose a simple model for the condensed matter field theory that leads to an approximate description for the ABJM abelianization. Finally, we also find some BPS solutions to the mass-deformed ABJM model with a spacetime interpretation as an M2-brane ending on a spherical M5-brane.Comment: 43 pages, latex, explanations added in the introduction, end of section 4, and on page 2
    corecore