38,438 research outputs found

    Experimental aspects of colour reconnection

    Get PDF
    This report summarises experimental aspects of the phenomena of colour reconnection in W+W- production, concentrating on charged multiplicity and event shapes, which were carried out as part of the Phenomenology Workshop on LEP2 Physics, Oxford, Physics Department and Keble College, 14-18 April, 1997. The work includes new estimates of the systematic uncertainty which may be attributed to colour reconnection effects in experimental measurements of Mw.Comment: 10 pages, 4 figures. To be published in proceedings of Phenomenology Workshop on LEP2 Physics, Oxford 14-18 April 199

    Gluon Correlators in the Kogan-Kovner Model

    Full text link
    The Lorentz-invariant gluon correlation functions, corresponding to scalar and pseudo-scalar glueballs, are calculated for Kogan's and Kovner's variational ansatz for the pure SU(N) Yang-Mills wavefunctional. One expects that only one dynamical mass scale should be present in QCD; the ansatz generates the expected scale for both glueballs, as well as an additional scale for the scalar glueball. The additional mass scale must therefore vanish, or be close to the expected one. This is shown to constrain the nature of the phase transition in the Kogan-Kovner ansatz.Comment: 9 pages, no figure

    The Cauchy Problem for the Wave Equation in the Schwarzschild Geometry

    Get PDF
    The Cauchy problem is considered for the scalar wave equation in the Schwarzschild geometry. We derive an integral spectral representation for the solution and prove pointwise decay in time.Comment: 33 page

    Extrinsic germanium Blocked Impurity Bank (BIB) detectors

    Get PDF
    Ge:Ga blocked-impurity-band (BIB) detectors with long wavelength thresholds greater than 190 microns and peak quantum efficiencies of 4 percent, at an operating temperature of 1.8 K, have been fabricated. These proof of concept devices consist of a high purity germanium blocking layer epitaxially grown on a Ga-doped Ge substrate. This demonstration of BIB behavior in germanium enables the development of far infrared detector arrays similar to the current silicon-based devices. Present efforts are focussed on improving the chemical vapor deposition process used to create the blocking layer and on the lithographic processing required to produce monolithic detector arrays in germanium. Approaches to test the impurity levels in both the blocking and active layers are considered

    Hadronic unquenching effects in the quark propagator

    Full text link
    We investigate hadronic unquenching effects in light quarks and mesons. Within the non-perturbative continuum framework of Schwinger-Dyson and Bethe-Salpeter equations we quantify the strength of the back reaction of the pion onto the quark-gluon interaction. To this end we add a Yang-Mills part of the interaction such that unquenched lattice results for various current quark masses are reproduced. We find considerable effects in the quark mass function at low momenta as well as for the chiral condensate. The quark wave function is less affected. The Gell--Mann-Oakes-Renner relation is valid to good accuracy up to pion masses of 400-500 MeV. As a byproduct of our investigation we verify the Coleman theorem, that chiral symmetry cannot be broken spontaneously when QCD is reduced to 1+1 dimensions.Comment: 27 pages, 15 figures, minor corrections and clarifications; version to appear in PR

    Germanium:gallium photoconductors for far infrared heterodyne detection

    Get PDF
    Highly compensated Ge:Ga photoconductors have been fabricated and evaluated for high bandwidth heterodyne detection. Bandwidths up to 60 MHz have been obtained with corresponding current responsivity of 0.01 A/W

    FearNot! An Anti-Bullying Intervention: Evaluation of an Interactive Virtual Learning Environment

    Get PDF
    Original paper can be found at: http://www.aisb.org.uk/publications/proceedings.shtm

    Flight-test of the glide-slope track and flare-control laws for an automatic landing system for a powered-lift STOL airplane

    Get PDF
    An automatic landing system was developed for the Augmentor Wing Jet STOL Research Airplane to establish the feasibility and examine the operating characteristics of a powered-lift STOL transport flying a steep, microwave landing system (MLS) glide slope to automatically land on a STOL port. The flight test results address the longitudinal aspects of automatic powered lift STOL airplane operation including glide slope tracking on the backside of the power curve, flare, and touchdown. Three different autoland control laws were evaluated to demonstrate the tradeoff between control complexity and the resulting performance. The flight test and simulation methodology used in developing conventional jet transport systems was applied to the powered-lift STOL airplane. The results obtained suggest that an automatic landing system for a powered-lift STOL airplane operating into an MLS-equipped STOL port is feasible. However, the airplane must be provided with a means of rapidly regulation lift to satisfactorily provide the glide slope tracking and control of touchdown sink rate needed for automatic landings
    corecore