9,181 research outputs found

    Limits on monopole fluxes from KFG experiment

    Get PDF
    The nucleon decay experiment at KGF at a depth of 2.3 Km is eminently suited for the search of Grand Unified theory (GUT) monopoles, whose velocities at the present epoch are predicted to be around 0.001C. At this depth the cosmic ray background is at a level 2/day in the detector of size 4m x 6m x 3.7m and one can look for monopoles traversing the detector in all directions, using three methods, i.e., (1) dE/dx (ionization); (2) time of flight and (3) catalysis of nucleon decay. The detector is composed of 34 layers of proportional counters arranged in horizontal planes one above the other in an orthogonal maxtrix. Each of the 1594 counters are instrumented to measure ionization in the gas (90% Argon + 10% Methane) as well as the time of arrival of particles

    Halogen bonding with the halogenabenzene bird structure, halobenzene and halocyclopentadiene

    Get PDF
    We thank EastCHEM for support via the EaStCHEM Research Computing Facility. The research data supporting this publication cab be accessed at https://doi.org/10.17630/a3b1f172-dd54-4df1-a498-9951cfce9cee.The ability of the “bird-like” halogenabenzene molecule, referred to as X-bird (X= Cl to At), to form halogen-bonded complexes with the nucleophiles H2O and NH3 was investigated using double-hybrid density functional theory and the aug-cc-pVTZ/aug-cc-pVTZ-PP basis set. The structures and interaction energies were compared with 5-halocyclopenta-1,3-diene (halocyclopentadiene; an isomer of halogenabenzene) and halobenzene, also complexed with H2O and NH3. The unusual structure of the X-bird, with the halogen bonded to two carbon atoms, results in two distinct σ-holes, roughly at the extension of the C-X bonds. Based on the behaviour of the interaction energy (which increases for heavier halogens) and van der Waals (vdW) ratio (which decreases for heavier halogens), it is concluded that the X-bird forms proper halogen bonds with H2O and NH3. The interaction energies are larger than those of the halogen-bonded complexes involving halobenzene and halocyclopentadiene, presumably due to the presence of a secondary interaction.PostprintPostprintPeer reviewe
    corecore