4,305 research outputs found

    Pseudo-magnetic field distribution and pseudo-Landau levels in suspended graphene flakes

    Full text link
    Combining the tight-binding approximation and linear elasticity theory for a planar membrane, we investigate stretching of a graphene flake assuming that two opposite edges of the sample are clamped by the contacts. We show that, depending on the aspect ratio of the flake and its orientation, gapped states may form in the membrane in the vicinity of the contacts. This gap in the pre-contact region should be biggest for the armchair orientation of the flake and width to length ratio of around 1.Comment: 7 pages + 3 figure

    Landau levels in deformed bilayer graphene at low magnetic fields

    Full text link
    We review the effect of uniaxial strain on the low-energy electronic dispersion and Landau level structure of bilayer graphene. Based on the tight-binding approach, we derive a strain-induced term in the low-energy Hamiltonian and show how strain affects the low-energy electronic band structure. Depending on the magnitude and direction of applied strain, we identify three regimes of qualitatively different electronic dispersions. We also show that in a weak magnetic field, sufficient strain results in the filling factor ff=+-4 being the most stable in the quantum Hall effect measurement, instead of ff=+-8 in unperturbed bilayer at a weak magnetic field. To mention, in one of the strain regimes, the activation gap at ff=+-4 is, down to very low fields, weakly dependent on the strength of the magnetic field.Comment: 14 single-column pages, 5 figures, more details on material presented in arXiv:1104.502

    Influence of Zeeman splitting and thermally excited polaron states on magneto-electrical and magneto-thermal properties of magnetoresistive polycrystalline manganite La_{0.8}Sr_{0.2}MnO_3

    Full text link
    Some possible connection between spin and charge degrees of freedom in magneto-resistive manganites is investigated through a thorough experimental study of the magnetic (AC susceptibility and DC magnetization) and transport (resistivity and thermal conductivity) properties. Measurements are reported in the case of well characterized polycrystalline La_{0.8}Sr_{0.2}MnO_3 samples. The experimental results suggest rather strong field-induced polarization effects in our material, clearly indicating the presence of ordered FM regions inside the semiconducting phase. Using an analytical expression which fits the spontaneous DC magnetization, the temperature and magnetic field dependences of both electrical resistivity and thermal conductivity data are found to be well reproduced through a universal scenario based on two mechanisms: (i) a magnetization dependent spin polaron hopping influenced by a Zeeman splitting effect, and (ii) properly defined thermally excited polaron states which have to be taken into account in order to correctly describe the behavior of the less conducting region. Using the experimentally found values of the magnetic and electron localization temperatures, we obtain L=0.5nm and m_p=3.2m_e for estimates of the localization length (size of the spin polaron) and effective polaron mass, respectively.Comment: Accepted for publication in Journal of Applied Physic

    Percolation-induced exponential scaling in the large current tails of random resistor networks

    Get PDF
    There is a renewed surge in percolation-induced transport properties of diverse nano-particle composites (cf. RSC Nanoscience & Nanotechnology Series, Paul O'Brien Editor-in-Chief). We note in particular a broad interest in nano-composites exhibiting sharp electrical property gains at and above percolation threshold, which motivated us to revisit the classical setting of percolation in random resistor networks but from a multiscale perspective. For each realization of random resistor networks above threshold, we use network graph representations and associated algorithms to identify and restrict to the percolating component, thereby preconditioning the network both in size and accuracy by filtering {\it a priori} zero current-carrying bonds. We then simulate many realizations per bond density and analyze scaling behavior of the complete current distribution supported on the percolating component. We first confirm the celebrated power-law distribution of small currents at the percolation threshold, and second we confirm results on scaling of the maximum current in the network that is associated with the backbone of the percolating cluster. These properties are then placed in context with global features of the current distribution, and in particular the dominant role of the large current tail that is most relevant for material science applications. We identify a robust, exponential large current tail that: 1. persists above threshold; 2. expands broadly over and dominates the current distribution at the expense of the vanishing power law scaling in the small current tail; and 3. by taking second moments, reproduces the experimentally observed power law scaling of bulk conductivity above threshold

    Energy solutions to one-dimensional singular parabolic problems with BVBV data are viscosity solutions

    Full text link
    We study one-dimensional very singular parabolic equations with periodic boundary conditions and initial data in BVBV, which is the energy space. We show existence of solutions in this energy space and then we prove that they are viscosity solutions in the sense of Giga-Giga.Comment: 15 page

    Spectroscopic Signatures of Electronic Excitations in Raman Scattering in Thin Films of Rhombohedral Graphite

    Full text link
    Rhombohedral graphite features peculiar electronic properties, including persistence of low-energy surface bands of a topological nature. Here, we study the contribution of electron-hole excitations towards inelastic light scattering in thin films of rhombohedral graphite. We show that, in contrast to the featureless electron-hole contribution towards Raman spectrum of graphitic films with Bernal stacking, the inelastic light scattering accompanied by electron-hole excitations in crystals with rhombohedral stacking produces distinct features in the Raman signal which can be used both to identify the stacking and to determine the number of layers in the film.Comment: 15 pages in preprint format, 4 figures, accepted versio

    Spectral features due to inter-Landau-level transitions in the Raman spectrum of bilayer graphene

    Get PDF
    We investigate the contribution of the low-energy electronic excitations towards the Raman spectrum of bilayer graphene for the incoming photon energy Omega >> 1eV. Starting with the four-band tight-binding model, we derive an effective scattering amplitude that can be incorporated into the commonly used two-band approximation. Due to the influence of the high-energy bands, this effective scattering amplitude is different from the contact interaction amplitude obtained within the two-band model alone. We then calculate the spectral density of the inelastic light scattering accompanied by the excitation of electron-hole pairs in bilayer graphene. In the absence of a magnetic field, due to the parabolic dispersion of the low-energy bands in a bilayer crystal, this contribution is constant and in doped structures has a threshold at twice the Fermi energy. In an external magnetic field, the dominant Raman-active modes are the n_{-} to n_{+} inter-Landau-level transitions with crossed polarisation of in/out photons. We estimate the quantum efficiency of a single n_{-} to n_{+} transition in the magnetic field of 10T as I_{n_{-} to n_{+}}~10^{-12}.Comment: 7 pages, 3 figures, expanded version published in PR

    Electronic Raman Scattering in Twistronic Few-Layer Graphene

    Get PDF
    We study electronic contribution to the Raman scattering signals of two-, three- and four-layer graphene with layers at one of the interfaces twisted by a small angle with respect to each other. We find that the Raman spectra of these systems feature two peaks produced by van Hove singularities in moir\'{e} minibands of twistronic graphene, one related to direct hybridization of Dirac states, and the other resulting from band folding caused by moir\'{e} superlattice. The positions of both peaks strongly depend on the twist angle, so that their detection can be used for non-invasive characterization of the twist, even in hBN-encapsulated structures.Comment: 7 pages (including 4 figures) + 10 pages (3 figures) supplemen
    corecore