27 research outputs found

    Selection of winter cereals for organic agriculture

    Get PDF
    Productivity in agriculture has more than tripled in developed countries since the 1950s. Beyond the success of plant breeding, the increased use of inorganic fertilizers, application of pesticides, and spread of irrigation also contributed to this success. However, impressive yield increases started to decline in the 1980s because of the lack of sustainability. One of the most beneficial ways to increase sustainability is organic agriculture. In such systems the prerequisite of successful farming is the availability of crop genotypes that perform well. However, selection of winter cereals for sub-optimal growing conditions is still neglected, and the organic seed market also lacks of information on credibly tested varieties suitable for organic agriculture

    Comparison of bread wheat varieties with different breeding origin under organic and low input management

    Get PDF
    The aims of the study were to compare 37 bread wheat varieties with different breeding origin under conventional and organic farming conditions in Hungary and Austria for three years and to identify traits highly sensitive to management systems that could be separated according to their suggested selecting environments. According to the results, heading date, sensitivity to leaf rust and powdery mildew had high heritability, thus, for economic reasons, it is reasonable to select for these traits in conventional fields even if the selection target is organic agriculture. On the contrary, selection for grain yield, test weight, leaf-inclination and vigorous growth should be done later in the target environment. It was concluded that the selecting environment has measurable effects on the performance of bread wheat varieties. Our results could help organic breeders in their selection work, especially in the continental climatic zone of Europe

    Functional compounds of einkorn and emmer genotypes

    Get PDF
    Three einkorn and two emmer genotypes were analysed for concentration of microelements (Fe, Zn and Se) and lipid soluble antioxidants (α-tocopherol, α-tocotrienol and β-carotene). A diversity was observed in micronutrient content, but most of the genotypes have significantly higher trace element and antioxidant contents than the control wheat variety. The emmer genotypes contain lower Fe and β-carotene concentration than einkorn genotypes. The einkorn genotypes have significant higher antioxidant content than the wheat control. On average einkorn has more than three times more β-carotene than the wheat variety. Our results are useful for species/variety choice in functional food production not only for organic but also for conventional farmers, who have/want to operate under low input conditions, especially in Central Europe

    Drought stress affects the protein and dietary fiber content of wholemeal wheat flour in wheat/Aegilops addition lines

    Get PDF
    Wild relatives of wheat, such as Aegilops spp. are potential sources of genes conferring tolerance to drought stress. As drought stress affects seed composition, the main goal of the present study was to determine the effects of drought stress on the content and composition of the grain storage protein (gliadin (Gli), glutenin (Glu), unextractable polymeric proteins (UPP%) and dietary fiber (arabinoxylan, β-glucan) components of hexaploid bread wheat (T. aestivum) lines containing added chromosomes from Ae. biuncialis or Ae. geniculata. Both Aegilops parents have higher contents of protein and β-glucan and higher proportions of water-soluble arabinoxylans (determined as pentosans) than wheat when grown under both well-watered and drought stress conditions. In general, drought stress resulted in increased contents of protein and total pentosans in the addition lines, while the β-glucan content decreased in many of the addition lines. The differences found between the wheat/Aegilops addition lines and wheat parents under well-watered conditions were also manifested under drought stress conditions: Namely, elevated β-glucan content was found in addition lines containing chromosomes 5Ug, 7Ug and 7Mb, while chromosomes 1Ub and 1Mg affected the proportion of polymeric proteins (determined as Glu/Gli and UPP%, respectively) under both well-watered and drought stress conditions. Furthermore, the addition of chromosome 6Mg decreased the WE-pentosan content under both conditions. The grain composition of the Aegilops accessions was more stable under drought stress than that of wheat, and wheat lines with the added Aegilops chromosomes 2Mg and 5Mg also had more stable grain protein and pentosan contents. The negative effects of drought stress on both the physical and compositional properties of wheat were also reduced by the addition of these. These results suggest that the stability of the grain composition could be improved under drought stress conditions by the intraspecific hybridization of wheat with its wild relatives

    Spintronics: Fundamentals and applications

    Get PDF
    Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems. This article reviews the current status of this subject, including both recent advances and well-established results. The primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport in semiconductors and metals. Spin transport differs from charge transport in that spin is a nonconserved quantity in solids due to spin-orbit and hyperfine coupling. The authors discuss in detail spin decoherence mechanisms in metals and semiconductors. Various theories of spin injection and spin-polarized transport are applied to hybrid structures relevant to spin-based devices and fundamental studies of materials properties. Experimental work is reviewed with the emphasis on projected applications, in which external electric and magnetic fields and illumination by light will be used to control spin and charge dynamics to create new functionalities not feasible or ineffective with conventional electronics.Comment: invited review, 36 figures, 900+ references; minor stylistic changes from the published versio

    Association between anxiety and non-coding genetic variants of the galanin neuropeptide

    Get PDF
    Galanin, an inhibitory neuropeptide and cotransmitter has long been known to co-localize with noradrenaline and serotonin in the central nervous system. Several human studies demonstrated altered galanin expression levels in major depressive disorder and anxiety. Pharmacological modulation of galanin signaling and transgenic strategies provide further proof for the involvement of the galanin system in the pathophysiology of mood disorders. Little is known, however, on the dynamic regulation of galanin expression at the transcriptional level. The aim of the present study was to seek genetic association of non-coding single nucleotide variations in the galanin gene with anxiety and depression.Six single nucleotide polymorphisms (SNP) occurring either in the regulatory 5' or 3' flanking regions or within intronic sequences of the galanin gene have been genotyped with a high-throughput TaqMan OpenArray qPCR system in 526 healthy students (40% males). Depression and anxiety scores were obtained by filling in the Hospital Anxiety and Depression Scale (HADS) questionnaire. Data were analyzed by ANCOVA and Bonferroni correction was applied for multiple testing. Linkage disequilibrium (LD) analysis was used to map two haploblocks in the analyzed region.A single-locus and a haplotype genetic association proved to be statistically significant. In single-marker analysis, the T allele of the rs1042577 SNP within the 3' untranslated region of the galanin gene associated with greater levels of anxiety (HADS scores were 7.05±4.0 vs 6.15±.15; p = 0.000407). Haplotype analysis revealed an association of the rs948854 C_rs4432027_C allele combination with anxiety [F(1,1046) = 4.140, p = 0.042141, η2 = 0.004, power = 0.529]. Neither of these associations turned out to be gender-specific. These promoter polymorphisms are supposed to participate in epigenetic regulation of galanin expression by creating potentially methylatable CpG dinucleotides. The functional importance of the rs1042577_T allele remains to be elucidated

    Prediction of in-vitro developmental competence of early cleavage-stage mouse embryos with compact time-lapse equipment

    No full text
    Single blastocyst transfer is regarded as an efficient way to achieve high pregnancy rates and to avoid multiple pregnancies. Risk of cancellation of transfer due to a lack of available embryos may be reduced by early prediction of blastocyst development. Time-lapse investigation of mouse embryos shows that the time of the first and second cleavage (to the 2- and 3-cell stages, respectively) has a strong predictive value for further development in vitro, while cleavage from the 3-cell to the 4-cell stage has no predictive value. In humans, embryo fragmentation during preimplantation development has been associated with lower pregnancyrates and a higher incidence of developmental abnormalities. Analysis of time-lapse records shows that most fragmentation is reversible in the mouse and is resorbed in an average of 9 h. Daily or bi-daily microscopic checks of embryo development, applied routinely in human IVF laboratories, would fail to detect 36 or 72% of these fragmentations, respectively. Fragmentation occurring in a defined time frame has a strong predictive value for in-vitro embryo development. The practical compact system used in the present trial, based on the ‘one camera per patient’ principle, has eliminated the usual disadvantages of time-lapse investigations and is applicable for the routine follow-up of in-vitro embryo development

    A new framework for understanding Pannonian vegetation patterns: regularities, deviations and uniqueness

    No full text
    corecore