16 research outputs found

    Viscous fingering and a shape of an electronic droplet in the Quantum Hall regime

    Full text link
    We show that the semiclassical dynamics of an electronic droplet confined in the plane in a quantizing inhomogeneous magnetic field in the regime when the electrostatic interaction is negligible is similar to viscous (Saffman-Taylor) fingering on the interface between two fluids with different viscosities confined in a Hele-Shaw cell. Both phenomena are described by the same equations with scales differing by a factor of up to 10−910^{-9}. We also report the quasiclassical wave function of the droplet in an inhomogeneous magnetic field.Comment: 4 pages, 1 eps figure include

    Laplacian Growth and Whitham Equations of Soliton Theory

    Full text link
    The Laplacian growth (the Hele-Shaw problem) of multi-connected domains in the case of zero surface tension is proven to be equivalent to an integrable systems of Whitham equations known in soliton theory. The Whitham equations describe slowly modulated periodic solutions of integrable hierarchies of nonlinear differential equations. Through this connection the Laplacian growth is understood as a flow in the moduli space of Riemann surfaces.Comment: 33 pages, 7 figures, typos corrected, new references adde

    Integrable Structure of Interface Dynamics

    Full text link
    We establish the equivalence of a 2D contour dynamics to the dispersionless limit of the integrable Toda hierarchy constrained by a string equation. Remarkably, the same hierarchy underlies 2D quantum gravity.Comment: 5 pages, no figures, submitted to Phys. Rev. Lett, typos correcte

    Large scale correlations in normal and general non-Hermitian matrix ensembles

    Full text link
    We compute the large scale (macroscopic) correlations in ensembles of normal random matrices with an arbitrary measure and in ensembles of general non-Hermition matrices with a class of non-Gaussian measures. In both cases the eigenvalues are complex and in the large NN limit they occupy a domain in the complex plane. For the case when the support of eigenvalues is a connected compact domain, we compute two-, three- and four-point connected correlation functions in the first non-vanishing order in 1/N in a manner that the algorithm of computing higher correlations becomes clear. The correlation functions are expressed through the solution of the Dirichlet boundary problem in the domain complementary to the support of eigenvalues. The two-point correlation functions are shown to be universal in the sense that they depend only on the support of eigenvalues and are expressed through the Dirichlet Green function of its complement.Comment: 16 pages, 1 figure, LaTeX, submitted to J. Phys. A special issue on random matrices, minor corrections, references adde

    Integrability in SFT and new representation of KP tau-function

    Get PDF
    We are investigating the properties of vacuum and boundary states in the CFT of free bosons under the conformal transformation. We show that transformed vacuum (boundary state) is given in terms of tau-functions of dispersionless KP (Toda) hierarchies. Applications of this approach to string field theory is considered. We recognize in Neumann coefficients the matrix of second derivatives of tau-function of dispersionless KP and identify surface states with the conformally transformed vacuum of free field theory.Comment: 25 pp, LaTeX, reference added in the Section 3.

    Kernel Formula Approach to the Universal Whitham Hierarchy

    Full text link
    We derive the dispersionless Hirota equations of the universal Whitham hierarchy from the kernel formula approach proposed by Carroll and Kodama. Besides, we also verify the associativity equations in this hierarchy from the dispersionless Hirota equations and give a realization of the associative algebra with structure constants expressed in terms of the residue formulas.Comment: 18 page

    Random Matrices in 2D, Laplacian Growth and Operator Theory

    Full text link
    Since it was first applied to the study of nuclear interactions by Wigner and Dyson, almost 60 years ago, Random Matrix Theory (RMT) has developed into a field of its own within applied mathematics, and is now essential to many parts of theoretical physics, from condensed matter to high energy. The fundamental results obtained so far rely mostly on the theory of random matrices in one dimension (the dimensionality of the spectrum, or equilibrium probability density). In the last few years, this theory has been extended to the case where the spectrum is two-dimensional, or even fractal, with dimensions between 1 and 2. In this article, we review these recent developments and indicate some physical problems where the theory can be applied.Comment: 88 pages, 8 figure
    corecore