289 research outputs found

    The changing shape of sport through information technologies

    Full text link
    The aim and focus of this study was to examine the changes in sport and with the sport's stakeholders with the introduction of technologies. The examination was conducted through series of interviews (n=36) and a review of the literature to gain understandings from three areas: (1) Professional players and coaches of professional players (2) Amateur players and coaches at amateur levels and (3) Spectators. The findings presented that players at the professional level are using various technologies such as GPS vests to manage workload and reduce risk of injury. With amateur level sport, technologies are not as prevalent and the possible introduction of technology was surprisingly not considered as imperative. Spectators, in general, considered that the introduction of technologies changed the dimensions of their involvement positively and negatively. The findings provide a basis for further studies and possible trials with additional technologies to further assist the athlete and coaches and innovatively enhance the spectator's experience

    Osteosarcoma Phenotype Is Inhibited by 3,4-Methylenedioxy-β-nitrostyrene

    Get PDF
    β-nitrostyrene compounds, such as 3,4-methylenedioxy-β-nitrostyrene (MNS), inhibit growth and induce apoptosis in tumor cells, but no reports have investigated their role in osteosarcoma. In this study, human osteosarcoma cell families with cell lines of varying tumorigenic and metastatic potential were utilized. Scrape motility assays, colony formation assays, and colony survival assays were performed with osteosarcoma cell lines, both in the presence and absence of MNS. Effects of MNS on human osteoblasts and airway epithelial cells were assessed in monolayer cultures. MNS decreased metastatic cell line motility by 72–76% and colony formation by 95–100%. MNS consistently disrupted preformed colonies in a time-dependent and dose-dependent manner. MNS had similar effects on human osteoblasts but little effect on airway epithelial cells. An inactive analog of MNS had no detectable effects, demonstrating specificity. MNS decreases motility and colony formation of osteosarcoma cells and disrupts preformed cell colonies, while producing little effect on pulmonary epithelial cells

    Molecular alterations as target for therapy in metastatic osteosarcoma: a review of literature

    Get PDF
    Treating metastatic osteosarcoma (OS) remains a challenge in oncology. Current treatment strategies target the primary tumour rather than metastases and have a limited efficacy in the treatment of metastatic disease. Metastatic cells have specific features that render them less sensitive to therapy and targeting these features might enhance the efficacy of current treatment. A detailed study of the biological characteristics and behaviour of metastatic OS cells may provide a rational basis for innovative treatment strategies. The aim of this review is to give an overview of the biological changes in metastatic OS cells and the preclinical and clinical efforts targeting the different steps in OS metastases and how these contribute to designing a metastasis directed treatment for OS

    Receptor Tyrosine Kinases in Osteosarcoma: 2019 Update

    Get PDF
    The primary conclusions of our 2014 contribution to this series were as follows: Multiple receptor tyrosine kinases (RTKs) likely contribute to aggressive phenotypes in osteosarcoma and, therefore, inhibition of multiple RTKs is likely necessary for successful clinical outcomes. Inhibition of multiple RTKs may also be useful to overcome resistance to inhibitors of individual RTKs as well as resistance to conventional chemotherapies. Different combinations of RTKs are likely important in individual patients. AXL, EPHB2, FGFR2, IGF1R, and RET were identified as promising therapeutic targets by our in vitro phosphoproteomic/siRNA screen of 42 RTKs in the highly metastatic LM7 and 143B human osteosarcoma cell lines. This chapter is intended to provide an update on these topics as well as the large number of osteosarcoma clinical studies of inhibitors of multiple tyrosine kinases (multi-TKIs) that were recently published
    corecore