37 research outputs found

    Paraxial propagation in amorphous optical media with screw dislocation

    Full text link
    We study paraxial beam propagation parallel to the screw axis of a dislocated amorphous medium that is optically weakly inhomogeneous and isotropic. The effect of the screw dislocation on the beam's orbital angular momentum is shown to change the optical vortex strength, rendering vortex annihilation or generation possible. Furthermore, the dislocation is shown to induce a weak \textit{biaxial} anisotropy in the medium due to the elasto-optic effect, which changes the beam's spin angular momentum as well as causing precession of the polarization. We derive the equations of motion of the beam and demonstrate the optical Hall effect in the dislocated medium. Its application with regard to determining the Burgers vector as well as the elasto-optic coefficients of the medium is explained

    Superselection from canonical constraints

    Full text link
    The evolution of both quantum and classical ensembles may be described via the probability density P on configuration space, its canonical conjugate S, and an_ensemble_ Hamiltonian H[P,S]. For quantum ensembles this evolution is, of course, equivalent to the Schroedinger equation for the wavefunction, which is linear. However, quite simple constraints on the canonical fields P and S correspond to_nonlinear_ constraints on the wavefunction. Such constraints act to prevent certain superpositions of wavefunctions from being realised, leading to superselection-type rules. Examples leading to superselection for energy, spin-direction and `classicality' are given. The canonical formulation of the equations of motion, in terms of a probability density and its conjugate, provides a universal language for describing classical and quantum ensembles on both continuous and discrete configuration spaces, and is briefly reviewed in an appendix.Comment: MiKTex 2.3, no figures, minor clarifications, to appear in J. Phys.

    One-loop approximation of Moller scattering in Krein-space quantization

    Full text link
    It has been shown that the negative-norm states necessarily appear in a covariant quantization of the free minimally coupled scalar field in de Sitter spacetime [1,2]. In this processes ultraviolet and infrared divergences have been automatically eliminated [3]. A natural renormalization of the one-loop interacting quantum field in Minkowski spacetime (λϕ4\lambda\phi^4) has been achieved through the consideration of the negative-norm states defined in Krein space. It has been shown that the combination of quantum field theory in Krein space together with consideration of quantum metric fluctuation, results in quantum field theory without any divergences [4]. Pursuing this approach, we express Wick's theorem and calculate M{\o}ller scattering in the one-loop approximation in Krein space. The mathematical consequence of this method is the disappearance of the ultraviolet divergence in the one-loop approximation.Comment: 10 page

    Berry effect in acoustical polarization transport in phononic crystals

    Full text link
    We derive the semiclassical equations of motion of a transverse acoustical wave packet propagating in a phononic crystal subject to slowly varying perturbations. The formalism gives rise to Berry effect terms in the equations of motion, manifested as the Rytov polarization rotation law and the polarization-dependent Hall effect. We show that the formalism is also applicable to the case of non-periodic inhomogeneous media, yielding explicit expressions for the Berry effect terms.Comment: To appear in JETP Let

    Dependence of interface conductivity on relevant physical parameters in polarized Fermi mixtures

    Full text link
    We consider a mass-asymmetric polarized Fermi system in the presence of Hartree-Fock (HF) potentials. We concentrate on the BCS regime with various interaction strengths and numerically obtain the allowed values of the chemical and HF potentials, as well as the mass ratio. The functional dependence of the heat conductivity of the N-SF interface on relevant physical parameters, namely the temperature, the mass ratio, and the interaction strength, is obtained. In particular, we show that the interface conductivity starts to drop with decreasing temperature at the temperature, TmT_{\text{m}}, where the mean kinetic energy of the particles is just sufficient to overcome the SF gap. We obtain TmT_{\text{m}} as a function of the mass ratio and the interaction strength. The variation of the heat conductivity, at fixed temperature, with the HF potentials and the imbalance chemical potential is also obtained. Finally, because the range of relevant temperatures increases for larger values of the mass ratio, we consider the 6Li^6\text{Li}-40K^{40}\text{K} mixture separately by taking the temperature dependence of the pair potential into account.Comment: To appear in Physica C (2012

    Linear response of heat conductivity of normal-superfluid interface of a polarized Fermi gas to orbital magnetic field

    Full text link
    Using perturbed Bogoliubov equations, we study the linear response to a weak orbital magnetic field of the heat conductivity of the normal-superfluid interface of a polarized Fermi gas at sufficiently low temperature. We consider the various scattering regions of the BCS regime and analytically obtain the transmission coefficients and the heat conductivity across the interface in an arbitrary weak orbital field. For a definite choice of the field, we consider various values of the scattering length in the BCS range and numerically obtain the allowed values of the average and species-imbalance chemical potentials. Thus, taking Andreev reflection into account, we describe how the heat conductivity is affected by the field and the species imbalance. In particular, we show that the additional heat conductivity due to the orbital field increases with the species imbalance, which is more noticeable at higher temperatures. Our results indicate how the heat conductivity may be controlled, which is relevant to sensitive magnetic field sensors/regulators at the interface.Comment: To appear in Physica B (2011

    Macroscopic effects of the spectral structure in turbulent flows

    Full text link
    Two aspects of turbulent flows have been the subject of extensive, split research efforts: macroscopic properties, such as the frictional drag experienced by a flow past a wall, and the turbulent spectrum. The turbulent spectrum may be said to represent the fabric of a turbulent state; in practice it is a power law of exponent \alpha (the "spectral exponent") that gives the revolving velocity of a turbulent fluctuation (or "eddy") of size s as a function of s. The link, if any, between macroscopic properties and the turbulent spectrum remains missing. Might it be found by contrasting the frictional drag in flows with differing types of spectra? Here we perform unprecedented measurements of the frictional drag in soap-film flows, where the spectral exponent \alpha = 3 and compare the results with the frictional drag in pipe flows, where the spectral exponent \alpha = 5/3. For moderate values of the Reynolds number Re (a measure of the strength of the turbulence), we find that in soap-film flows the frictional drag scales as Re^{-1/2}, whereas in pipe flows the frictional drag scales as Re^{-1/4} . Each of these scalings may be predicted from the attendant value of \alpha by using a new theory, in which the frictional drag is explicitly linked to the turbulent spectrum. Our work indicates that in turbulence, as in continuous phase transitions, macroscopic properties are governed by the spectral structure of the fluctuations.Comment: 6 pages, 3 figure
    corecore