728 research outputs found

    Christian Eschatology and the Assumption

    Get PDF

    Wound healing angiogenesis the clinical implications of a simple mathematical model

    Get PDF
    Nonhealing wounds are a major burden for health care systems worldwide. In addition, a patient who suffers from this type of wound usually has a reduced quality of life. While the wound healing process is undoubtedly complex, in this paper we develop a deterministic mathematical model, formulated as a system of partial differential equations, that focusses on an important aspect of successful healing: oxygen supply to the wound bed by a combination of diffusion from the surrounding unwounded tissue and delivery from newly-formed blood vessels. While the model equations can be solved numerically, the emphasis here is on the use of asymptotic methods to establish conditions under which new blood vessel growth can be initiated and wound-bed angiogenesis can progress. These conditions are given in terms of key model parameters including the rate of oxygen supply and its rate of consumption in the wound. We use our model to discuss the clinical use of treatments such as hyperbaric oxygen therapy, wound bed debridement, and revascularisation therapy that have the potential to initiate healing in chronic, stalled wounds

    Tear film thickness variations and the role of the tear meniscus

    Get PDF
    A mathematical model is developed to investigate the two-dimensional variations in the thickness of tear fluid deposited on the eye surface during a blink. Such variations can become greatly enhanced as the tears evaporate during the interblink period.\ud The four mechanisms considered are: i) the deposition of the tear film from the upper eyelid meniscus, ii) the flow of tear fluid from under the eyelid as it is retracted and from the lacrimal gland, iii) the flow of tear fluid around the eye within the meniscus and iv) the drainage of tear fluid into the canaliculi through the inferior and superior puncta.\ud There are two main insights from the modelling. First is that the amount of fluid within the tear meniscus is much greater than previously employed in models and this significantly changes the predicted distribution of tears. Secondly the uniformity of the tear film for a single blink is: i) primarily dictated by the storage in the meniscus, ii) quite sensitive to the speed of the blink and the ratio of the viscosity to the surface tension iii) less sensitive to the precise puncta behaviour, the flow under the eyelids or the specific distribution of fluid along the meniscus at the start of the blink. The modelling briefly examines the flow into the puncta which interact strongly with the meniscus and acts to control the meniscus volume. In addition it considers flow from the lacrimal glands which appears to occurs continue even during the interblink period when the eyelids are stationary

    Organizing Activity Among University Clerical Workers

    Get PDF
    [Excerpt] As union membership has declined and blue-collar employment has contracted, union organizers have shifted their attention to white-collar workers in the largely nonunion service sector. Interviews with union organizers indicate that a disproportionate share of this organizing activity has been aimed at college and university clerical employees. In order to gain a better understanding of this activity, two avenues of inquiry were pursued. Interviews were conducted with 48 union officials who have been involved in university clerical organizing. In addition, a questionnaire concerning the unionization of clerical workers was mailed in 1986 to personnel directors of all colleges and universities in New England with accredited bachelor\u27s degree programs. This paper summarizes the interviews with union officials, focusing on factors which influence organizing success among university clericals. The hypotheses which are developed are then subjected to econometric analysis using data from the survey of personnel directors and other sources

    A dual-mask coronagraph for observing faint companions to binary stars

    Full text link
    Observations of binary stars for faint companions with conventional coronagraphic methods are challenging, as both targets will be bright enough to obscure any nearby faint companions if their scattered light is not suppressed. We propose coronagraphic examination of binary stars using an apodized pupil Lyot coronagraph and a pair of actively-controlled image plane masks to suppress both stars simultaneously. The performance is compared to imaging with a band-limited mask, a dual-mask Lyot coronagraph and with no coronagraph at all. An imaging procedure and control system for the masks are also described.Comment: 17 pages, 6 figure

    Keck Imaging of Binary L Dwarfs

    Get PDF
    We present Keck near-infrared imaging of three binary L dwarf systems, all of which are likely to be sub-stellar. Two are lithium dwarfs, and a third exhibits an L7 spectral type, making it the coolest binary known to date. All have component flux ratios near 1 and projected physical separations between 5 and 10 AU, assuming distances of 18 to 26 pc from recent measurements of trigonometric parallax. These surprisingly similar binaries represent the sole detections of companions in ten L dwarf systems which were analyzed in the preliminary phase of a much larger dual-epoch imaging survey. The detection rate prompts us to speculate that binary companions to L dwarfs are common, that similar-mass systems predominate, and that their distribution peaks at radial distances in accord both with M dwarf binaries and with the radial location of Jovian planets in our own solar system. To fully establish these conjectures against doubts raised by biases inherent in this small preliminary survey, however, will require quantitative analysis of a larger volume-limited sample which has been observed with high resolution and dynamic range.Comment: LaTex manuscript in 13 pages, 3 postscript figures, Accepted for publication in the Letters of the Astrophysical Journal; Postscript pre-print version available at: http://www.hep.upenn.edu/PORG/papers/koerner99a.p

    Increased atmospheric SO₂ detected from changes in leaf physiognomy across the Triassic-Jurassic boundary interval of East Greenland

    Get PDF
    This is the final version of the article. Available from the publisher via the DOI in this record.The Triassic-Jurassic boundary (Tr-J; ∼201 Ma) is marked by a doubling in the concentration of atmospheric CO2, rising temperatures, and ecosystem instability. This appears to have been driven by a major perturbation in the global carbon cycle due to massive volcanism in the Central Atlantic Magmatic Province. It is hypothesized that this volcanism also likely delivered sulphur dioxide (SO2) to the atmosphere. The role that SO2 may have played in leading to ecosystem instability at the time has not received much attention. To date, little direct evidence has been presented from the fossil record capable of implicating SO2 as a cause of plant extinctions at this time. In order to address this, we performed a physiognomic leaf analysis on well-preserved fossil leaves, including Ginkgoales, bennettites, and conifers from nine plant beds that span the Tr-J boundary at Astartekløft, East Greenland. The physiognomic responses of fossil taxa were compared to the leaf size and shape variations observed in nearest living equivalent taxa exposed to simulated palaeoatmospheric treatments in controlled environment chambers. The modern taxa showed a statistically significant increase in leaf roundness when fumigated with SO2. A similar increase in leaf roundness was also observed in the Tr-J fossil taxa immediately prior to a sudden decrease in their relative abundances at Astartekløft. This research reveals that increases in atmospheric SO2 can likely be traced in the fossil record by analyzing physiognomic changes in fossil leaves. A pattern of relative abundance decline following increased leaf roundness for all six fossil taxa investigated supports the hypothesis that SO2 had a significant role in Tr-J plant extinctions. This finding highlights that the role of SO2 in plant biodiversity declines across other major geological boundaries coinciding with global scale volcanism should be further explored using leaf physiognomy.KLB acknowledges funding through a UCD Research Demonstratorship and Science Foundation Ireland (SFI 11/PI/1103). CMB acknowledges funding through a European Union Marie Curie Intra-European Fellowship FILE PIEF-GA-2009-253780 and a Marie Curie Career Integration Grant PyroMap PCIG10-GA- 2011-303610. MH acknowledges funding though PEA-IEF-2010-275626. JMC acknowledges funding through Science Foundation Ireland (SFI 11/PI/1103) and a European Research Council Starting Investigator Grant (ERC-2001-StG_279962). JMC, CMB, and MH acknowledge funding through a Marie Curie research grant (MEXT-CT-2006-042531)

    Can atmospheric composition influence plant fossil preservation potential via changes in leaf mass per area? A new hypothesis based on simulated palaeoatmosphere experiments

    Get PDF
    Atmospheric composition, particularly levels of CO2 and O2, impacts all aspects of life but its role in relation to plant preservation in the fossil record is largely unconsidered. Plants, angiosperms in particular, have been widely shown to increase leaf mass per area (LMA) under high CO2 conditions and decrease LMA in low CO2 conditions. Leaf thickness has long been known to be a contributory factor in preservation potential in the plant fossil record, with thicker leaves considered to have a greater recalcitrance than thinner ones. Therefore, any change in leaf density/thickness, through changes to LMA, could lead to an increased or decreased preservation potential of fossil leaves at times of elevated or decreased CO2, respectively. . Additionally, the impact of changes to atmospheric O2 and to the atmospheric CO2:O2 ratio on LMA has not been previously considered in detail. This investigation examines the effect of simulated Mesozoic atmospheres, times of high CO2 and low O2, on LMA in a suite of gymnosperms that act as nearest living equivalents for common elements of Mesozoic floras. Exposure to high CO2 (~ 1,500 ppm) led to a statistically significant (p < 0.001) increase in LMA in four out of 6 species, and exposure to combined high CO2 and low O2 (~ 13%) induced a statistically significant (p < 0.001) increase in LMA in all six species. The investigation also examined the effects of atmospheric composition on %N, a key plant trait known to co-vary with LMA under modern atmospheric compositions that provides information on plant function and relates to photosynthetic efficiency. Most species showed decreased %N in treatments with increased LMA in agreement with modern ecological studies and supporting the co-varying nature of LMA and %N regardless of CO2:O2 ratio. These findings suggest that atmospheric composition has a pronounced impact on LMA. Based on these results, we propose the hypothesis that atmospheric composition is an important taphonomic filter of the fossil leaf record. Further research is now required to test the significance of atmospheric composition versus other well-known taphonomic filters

    Modeling the growth of multicellular cancer spheroids in a\ud bioengineered 3D microenvironment and their treatment with an\ud anti-cancer drug

    Get PDF
    A critical step in the dissemination of ovarian cancer cells is the formation of multicellular spheroids from cells shed from the primary tumor. The objectives of this study were to establish and validate bioengineered three-dimensional (3D) microenvironments for culturing ovarian cancer cells in vitro and simultaneously to develop computational models describing the growth of multicellular spheroids in these bioengineered matrices. Cancer cells derived from human epithelial ovarian carcinoma were embedded within biomimetic hydrogels of varying stiffness and cultured for up to 4 weeks. Immunohistochemistry was used to quantify the dependence of cell proliferation and apoptosis on matrix stiffness, long-term culture and treatment with the anti-cancer drug paclitaxel.\ud \ud Two computational models were developed. In the first model, each spheroid was treated as an incompressible porous medium, whereas in the second model the concept of morphoelasticity was used to incorporate details about internal stresses and strains. Each model was formulated as a free boundary problem. Functional forms for cell proliferation and apoptosis motivated by the experimental work were applied and the predictions of both models compared with the output from the experiments. Both models simulated how the growth of cancer spheroids was influenced by mechanical and biochemical stimuli including matrix stiffness, culture time and treatment with paclitaxel. Our mathematical models provide new perspectives on previous experimental results and have informed the design of new 3D studies of multicellular cancer spheroids
    corecore