140 research outputs found

    Recent laboratory tests of a hard x-ray solar flare polarimeter

    Get PDF
    We report on the development of a Compton scatter polarimeter for measuring the linear polarization of hard X-rays (50 - 300 keV) from solar flares. Such measurements would be useful for studying the directivity (or beaming) of the electrons that are accelerated in solar flares. We initially used a simple prototype polarimeter to successfully demonstrate the reliability of our Monte Carlo simulation code and to demonstrate our ability to generate a polarized photon source in the lab. We have recently fabricated a science model based on a modular design concept that places a self-contained polarimeter module on the front-end of a 5-inch position- sensitive PMT (PSPMT). The PSPMT is used to determine the Compton interaction location within an annular array of small plastic scintillator elements. Some of the photons that scatter within the plastic scintillator array are subsequently absorbed by a small centrally-located array of CsI(Tl) crystals that is read out by an independent multi-anode PMT. The independence of the two PMT readout schemes provides appropriate timing information for event triggering. We are currently testing this new polarimeter design in the laboratory to evaluate the performance characteristics of this design. Here we present the initial results from these laboratory tests. The modular nature of this design lends itself toward its accommodation on a balloon or spacecraft platform. A small array of such modules can provide a minimum detectable polarization (MDP) of less than 1% in the integrated 50 - 300 keV energy range for X-class solar flares

    Development of a hard X-ray polarimeter for astrophysics

    Get PDF
    We have been developing a Compton scatter polarimeter for measuring the linear polarization of hard X-rays (100-300 keV) from astrophysical sources. A laboratory prototype polarimeter has been used to successfully demonstrate the reliability of our Monte Carlo simulation code and to demonstrate our ability to generate a polarized photon source in the lab. Our design concept places a self-containedpolarimeter module on the front-end of a a 5-inch position sensitive PMT (PSPMT). We are currently working on the fabrication of a science model based on this PSPMT concept. Although the emphasis of our development effort is towards measuring hard X-rays from solar flares, our design has the advantage that it is sensitive over a rather large field-of-view (\u3e1 steradian), a feature that makes it especially attractive for Ī³-ray burst studies

    Development of a Hard X-Ray Polarimeter for Astrophysics

    Get PDF
    We have been developing a Compton scatter polarimeter for measuring the linear polarization of hard X-rays (100-300 keV) from astrophysical sources. A laboratory prototype polarimeter has been used to successfully demonstrate the reliability of our Monte Carlo simulation code and to demonstrate our ability to generate a polarized photon source in the lab. Our design concept places a self-containedpolarimeter module on the front-end of a a 5-inch position sensitive PMT (PSPMT). We are currently working on the fabrication of a science model based on this PSPMT concept. Although the emphasis of our development effort is towards measuring hard X-rays from solar flares, our design has the advantage that it is sensitive over a rather large field-of-view (\u3e1 steradian), a feature that makes it especially attractive for Ī³-ray burst studie

    A hard X-ray solar flare polarimeter design based on scintillating fibers

    Get PDF
    We have developed a design for a Compton scatter polarimeter to measure the polarization of hard X-rays (50ā€“300 keV) from solar flares. The modular design is based on an annular array of scintillating fibers coupled to a 5-inch position-sensitive PMT. Incident photons scatter from the fiber array into a small array of NaI detectors located at the center of the annulus. The location of the interactions in both the fiber array and in the NaI array can be used to measure the linear polarization of the incident flux. This compact design may be well-suited to a variety of astrophysical applications. An extensive series of Monte Carlo simulations has been performed to characterize this design

    Study of 5 and 10 mm thick CZT strip detectors

    Get PDF
    We report progress in the study of 5 and 10 mm thick CZT strip detectors featuring orthogonal coplanar anode contacts. This novel anode geometry combines the advantages of pixel detectors with those of double-sided strip detectors. Like pixel detectors, these are electron-only devices that perform well as hard x-ray and y-ray spectrometers and imagers even in the thicker configurations required for reasonable detection efficiency at 1 MeV. Like double-sided strip detectors in an N x N configuration, these detectors require only 2N readout channels to form N2 ā€œpixelsā€. Unlike doublesided strip detectors, all signal contacts for spectroscopy and 3- d imaging are formed on one detector surface. Polymer flip chip bonding to a ceramic substrate is employed resulting in a rugged and compact detector assembly. Prototype detector modules 5 mm thick have been fabricated and tested. Prototype modules, 10 mm thick, are currently in procurement. Measurements confirm these devices are efficient detectors throughout their volume. Sub-millimeter position resolution and energy resolution (FWHM) better than 3% at 662 keV and 15% at 60 keV throughout the detector volume are demonstrated. Options for processing the signals from the non-collecting anode strip contacts are discussed. Results from tests of one prototype circuit are presented. We also report on detector simulation studies aimed at defining an optimum geometry for the anode contacts and at determining optimum operating conditions and the requirements of the signal processing electronics

    Saudi SCD patientsā€™ symptoms and quality of life relative to the number of ED visits

    Get PDF
    Background Individuals living with sickle cell disease (SCD) have significantly increased emergency department (ED) use compared to the general population. In Saudi Arabia, health care is free for all individuals and therefore has no bearing on increased ED visits. However, little is known about the relationship between quality of life (QoL) and frequency of acute care utilization in this patient population. Methods A cross-sectional study was conducted on 366 patients with SCD who attended the outpatient department at King Fahad Hospital, Hofuf, Saudi Arabia. Data were collected through self-administered surveys, which included: demographics, SCD-related ED visits, clinical issues, and QoL levels. We assessed the ED use by asking for the number of SCD-related ED visits within a 6-month period. Results The self-report survey of ED visits was completed by 308 SCD patients. The median number of SCD-related ED visits within a 6-month time period (IQR) was four (2-7 visits). According to the unadjusted negative binomial model, the rate of SCD-related ED visits increased by (46, 39.3, 40, and 53.5 %) for patients with fever, skin redness with itching, swelling, and blood transfusion, respectively. Poor QoL tends to increase the rate of SCD-related ED visits. Well education and poor general health positively influenced the rate of SCD-related ED visits. Well education tends to increase the rate of SCD-related ED visits by 50.2 %. The rate of SCD-related ED visits decreased by 1.4 % for every point increase in general health. Conclusion Saudi patients with sickle cell disease reported a wide range of SCD-related ED visits. It was estimated that six of 10 SCD patients had at least three ED visits within a 6-month period. Well education and poor general health resulted in an increase in the rate of SCD-related ED visits

    Readout and performance of thick CZT strip detectors with orthogonal coplanar anodes

    Get PDF
    We report progress in the study of CZT strip detectors featuring orthogonal coplanar anode contacts. The work includes laboratory and simulation studies aimed at optimizing and developing compact, efficient, high performance detector modules for 0.05 to 1 MeV gamma radiation measurements. The novel coplanar anode strip configuration retains many of the performance advantages of pixel detectors yet requires far fewer electronic channels to perform both 3-d imaging and spectroscopy. We report on studies aimed at determining an optimum configuration of the analog signal processing electronics to employ with these detectors. We report measurements of energy and spatial resolution in three dimensions for prototype 5 and 10 mm thick CZT detectors using a set of shaping and summing amplifiers

    Development of CZT strip detector modules for 0.05- to 1-MeV gamma-ray imaging and spectroscopy

    Get PDF
    We report progress in our study of cadmium zinc telluride (CZT) strip detectors featuring orthogonal coplanar anode contacts. We specifically report on the performance, characterization and stability of 5 and 10 mm thick prototype CZT detectors fabricated using material from several manufacturers. Our ongoing work includes laboratory and simulation studies aimed at optimizing and developing compact, efficient, high performance detector modules for 0.05 to 1 MeV gamma radiation measurements with space-based instrumentation. The coplanar anode strip configuration retains many of the performance advantages of pixel detectors yet requires far fewer electronic channels to perform both 3-d imaging and spectroscopy. Minimizing the channel count is important for large balloon or space instruments including coded aperture telescopes (such as MARGIE or EXIST) and Compton imaging telescopes (such as TIGRE or ACT). We also present plans for developing compact, space qualified imaging modules designed for integration into closely packed large area detector arrays. We discuss issues associated with detector module and array electronics design and development

    Experiences of physical activity: A phenomenological study of individuals with cystic fibrosis

    Get PDF
    Although extensive research has investigated the benefits of physical activity in cystic fibrosis, minimal exploration of the experiences for individuals from a qualitative, phenomenological perspective has been carried out. The aim of this study was to explore the subjective experiences of physical activity for individuals with cystic fibrosis. The health-care team, at an Adult Cystic Fibrosis Unit in the United Kingdom, recruited 12 participants to take part. Interview data were analysed using interpretative phenomenological analysis. A central theme of ā€˜self-monitoringā€™ emerged from the accounts and was embedded in the three super-ordinate themes
    • ā€¦
    corecore