139 research outputs found
Wireless Power Transmission for Power Supply: State of Art
The wireless power supply is motivated by simple and comfortable use of many small electric appliances with low power input. This paper reviews the concepts which are suitable for wireless power transmission with respect to power supply of such appliances in small areas. The categorization of the concepts is made. The efficiency of the concepts is discussed on general base. The reference levels for exposure to electric and magnetic fields are mentioned, and maximal power delivered to an appliance by fulfillment of these levels is considered
L-System Tool for Generating Fractal Antenna Structures with Ability to Export into EM Simulators
An L-System (Lindenmayer system) is a scheme primarily developed in the area of the computer science for simulating the development of biological structures. It has also been found very useful for generating the geometry of various fractal antennas. A Matlab environment has been used for both implementing an in-plane L-systems algorithm and for creating appropriate files for widely used EM simulators like the IE3D and the CST Microwave Studio. Finally, the performance of the developed script is demonstrated on two fractal microstrip patch antennas
Optimization of Transient Response Radiation of Printed Ultra Wideband Dipole Antennas (Using Particle Swarm Optimization Method)
In case of particular ultra wideband applications (i.e. radar, positioning, etc.), it is crucial to know the transient responses of antennas. In the first part of the paper, the optimization process searches for the dipole shape that accomplishes two required parameters i.e. a good matching and a minimal distortion. The particle swarm optimization method was used in the process of the dipole shape optimization. As a result, the optimized ultra wideband dipole is perfectly matched. Moreover, it minimally distorts the applied signal. The second part of the paper discusses the influence of the feeding circuit on radiating parameters and on the dipole antenna matching
Collinear Microstrip Patch Antenna
The paper presents a brief overview of the development of so called collinear types of antenna arrays. A new type of this structure in microstrip technology is further introduced. The principle of the antenna operation is explained via surface current distribution of excited modes. Such distribution is reached via geometrical perturbation of a radiating element by slots introduced in such a way that they e liminate radiation from even half current wavelengths . The initial design and optimization of the prototype operating in RFID band (869 MHz) has been performed in planar simulator Zeland IE3D. A prototype has been realized and measured. The reached results show that the presented antenna has directional character as it can be expected due to the proposed technology and the presence of a planar ground plane
Wideband Measurement in a Small Shielded Box Using Equiangular Spiral Antennas
Small shielded boxes are nowadays widely used for measurement of EMS, EMI and sensitivity properties of different devices. This paper deals with an improvement of commercial small shielded box parameters for a measurement of sensitivity of small mobile devices in 650 MHz to 4 GHz frequency band. Optimization of shielded box parameters is obtained by an inner area modification. Suitable wideband equiangular spiral antenna was designed for this measurement. Parameters of antenna inside the box, such as gain, impedance, directivity etc. are discussed in the paper. Effects of antenna positions in the box for a transmission are shown and the best configuration of antennas placing for the transmission in the shielded box is chosen
Optical markers of magnetic phase transition in CrSBr
Here, we investigate the role of the interlayer magnetic ordering of CrSBr in
the framework of calculations and by using optical
spectroscopy techniques. These combined studies allow us to unambiguously
determine the nature of the optical transitions. In particular,
photoreflectance measurements, sensitive to the direct transitions, have been
carried out for the first time. We have demonstrated that optically induced
band-to-band transitions visible in optical measurement are remarkably well
assigned to the band structure by the momentum matrix elements and energy
differences for the magnetic ground state (A-AFM). In addition, our study
reveals significant differences in electronic properties for two different
interlayer magnetic phases. When the magnetic ordering of A-AFM to FM is
changed, the crucial modification of the band structure reflected in the
direct-to-indirect band gap transition and the significant splitting of the
conduction bands along the direction are obtained. In addition,
Raman measurements demonstrate a splitting between the in-plane modes
/, which is temperature dependent and can be assigned to
different interlayer magnetic states, corroborated by the DFT+U study.
Moreover, the mode has not been experimentally observed before.
Finally, our results point out the origin of interlayer magnetism, which can be
attributed to electronic rather than structural properties. Our results reveal
a new approach for tuning the optical and electronic properties of van der
Waals magnets by controlling the interlayer magnetic ordering in adjacent
layers.Comment: 33 pages, 15 figure
Asteroid Redirect Mission Proximity Operations for Reference Target Asteroid 2008 EV5
NASA's Asteroid Redirect Mission (ARM) is composed of two segments, the Asteroid Redirect Robotic Mission (ARRM), and the Asteroid Redirect Crewed Mission (ARCM). In March of 2015, NASA selected the Robotic Boulder Capture Option1 as the baseline for the ARRM. This option will capture a multi-ton boulder, (typically 2-4 meters in size) from the surface of a large (greater than approx.100 m diameter) Near-Earth Asteroid (NEA) and return it to cis-lunar space for subsequent human exploration during the ARCM. Further human and robotic missions to the asteroidal material would also be facilitated by its return to cis-lunar space. In addition, prior to departing the asteroid, the Asteroid Redirect Vehicle (ARV) will perform a demonstration of the Enhanced Gravity Tractor (EGT) planetary defense technique2. This paper will discuss the proximity operations which have been broken into three phases: Approach and Characterization, Boulder Capture, and Planetary Defense Demonstration. Each of these phases has been analyzed for the ARRM reference target, 2008 EV5, and a detailed baseline operations concept has been developed
GMF: A Model Migration Case for the Transformation Tool Contest
Using a real-life evolution taken from the Graphical Modeling Framework, we
invite submissions to explore ways in which model transformation and migration
tools can be used to migrate models in response to metamodel adaptation.Comment: In Proceedings TTC 2011, arXiv:1111.440
Enhanced Gravity Tractor Technique for Planetary Defense
Given sufficient warning time, Earth-impacting asteroids and comets can be deflected with a variety of different "slow push/pull" techniques. The gravity tractor is one technique that uses the gravitational attraction of a rendezvous spacecraft to the impactor and a low-thrust, high-efficiency propulsion system to provide a gradual velocity change and alter its trajectory. An innovation to this technique, known as the Enhanced Gravity Tractor (EGT), uses mass collected in-situ to augment the mass of the spacecraft, thereby greatly increasing the gravitational force between the objects. The collected material can be a single boulder, multiple boulders, regolith or a combination of different sources. The collected mass would likely range from tens to hundreds of metric tons depending on the size of the impactor and warning time available. Depending on the propulsion system's capability and the mass collected, the EGT approach can reduce the deflection times by a factor of 10 to 50 or more, thus reducing the deflection times of several decades to years or less and overcoming the main criticism of the traditional gravity tractor approach. Additionally, multiple spacecraft can orbit the target in formation to provide the necessary velocity change and further reduce the time needed by the EGT technique to divert hazardous asteroids and comets. The robotic segment of NASA's Asteroid Redirect Mission (ARM) will collect a multi-ton boulder from the surface of a large Near-Earth Asteroid (NEA) and will provide the first ever demonstration of the EGT technique and validate one method of collecting in-situ mass on an asteroid of hazardous size
The Asteroid Redirect Mission (ARM)
To achieve its long-term goal of sending humans to Mars, the National Aeronautics and Space Administration (NASA) plans to proceed in a series of incrementally more complex human spaceflight missions. Today, human flight experience extends only to Low-Earth Orbit (LEO), and should problems arise during a mission, the crew can return to Earth in a matter of minutes to hours. The next logical step for human spaceflight is to gain flight experience in the vicinity of the Moon. These cis-lunar missions provide a "proving ground" for the testing of systems and operations while still accommodating an emergency return path to the Earth that would last only several days. Cis-lunar mission experience will be essential for more ambitious human missions beyond the Earth- Moon system, which will require weeks, months, or even years of transit time
- …