5,740 research outputs found
Identifying genes required for respiratory growth of fission yeast
We have used both auxotroph and prototroph versions of the latest deletion-mutant library to identify genes required for respiratory growth on solid glycerol medium in fission yeast. This data set complements and enhances our recent study on functional and regulatory aspects of energy metabolism by providing additional proteins that are involved in respiration. Most proteins identified in this mutant screen have not been implicated in respiration in budding yeast. We also provide a protocol to generate a prototrophic mutant library, and data on technical and biological reproducibility of colony-based high-throughput screens
Scanning Electron Microscopy of Muscle Myofibrils After High Pressure Freezing and Freeze-Substitution-Staining
A novel approach to study the three dimensional ultrastructure of organelles and cells by means of scanning electron microscopy is described. Muscle myofibrils have been used in the development of the techniques since their structure is well characterized using conventional electron microscopic methods. Myofibrils in rigor buffer (with no cryo-protectants or pressure sealants) were frozen at high pressure (2300 bar) within specially designed chambers. The frozen specimens were then freeze-substituted-stained with methanol containing tungsten and iron salts and finally critical point dried. These methods allowed scanning electron microscopic observations of the organization of individual filaments within whole myofibrils over several sarcomeres. Images obtained showed excellent structural preservation with three dimensional information which is not available with other electron microscopic techniques. Success in these approaches was ascribed to (a) rapid and uniform freezing at high pressure without ice segregation patterns, (b) uniform electro-conductivity of the specimen closely attached to the polished carbon piston/carrier, and (c) good electron emission (secondary and back-scattered) from the metal incorporated into the myofibril structure without additional coating
miR-375 gene dosage in pancreatic β-cells: implications for regulation of β-cell mass and biomarker development
MicroRNAs play a crucial role in the regulation of cell growth and differentiation. Mice with genetic deletion of miR-375 exhibit impaired glycemic control due to decreased β-cell and increased α-cell mass and function. The relative importance of these processes for the overall phenotype of miR-375KO mice is unknown. Here, we show that mice overexpressing miR-375 exhibit normal β-cell mass and function. Selective re-expression of miR-375 in β-cells of miR-375KO mice normalizes both, α- and β-cell phenotypes as well as glucose metabolism. Using this model, we also analyzed the contribution of β-cells to the total plasma miR-375 levels. Only a small proportion (≈1 %) of circulating miR-375 originates from β-cells. Furthermore, acute and profound β-cell destruction is sufficient to detect elevations of miR-375 levels in the blood. These findings are supported by higher miR-375 levels in the circulation of type 1 diabetes (T1D) subjects but not mature onset diabetes of the young (MODY) and type 2 diabetes (T2D) patients. Together, our data support an essential role for miR-375 in the maintenance of β-cell mass and provide in vivo evidence for release of miRNAs from pancreatic β-cells. The small contribution of β-cells to total plasma miR-375 levels make this miRNA an unlikely biomarker for β-cell function but suggests a utility for the detection of acute β-cell death for autoimmune diabetes
The Ah receptor: adaptive metabolism, ligand diversity, and the xenokine model
Author Posting. © American Chemical Society, 2020. This is an open access article published under an ACS AuthorChoice License. The definitive version was published in Chemical Research in Toxicology, 33(4), (2020): 860-879, doi:10.1021/acs.chemrestox.9b00476.The Ah receptor (AHR) has been studied for almost five decades. Yet, we still have many important questions about its role in normal physiology and development. Moreover, we still do not fully understand how this protein mediates the adverse effects of a variety of environmental pollutants, such as the polycyclic aromatic hydrocarbons (PAHs), the chlorinated dibenzo-p-dioxins (“dioxins”), and many polyhalogenated biphenyls. To provide a platform for future research, we provide the historical underpinnings of our current state of knowledge about AHR signal transduction, identify a few areas of needed research, and then develop concepts such as adaptive metabolism, ligand structural diversity, and the importance of proligands in receptor activation. We finish with a discussion of the cognate physiological role of the AHR, our perspective on why this receptor is so highly conserved, and how we might think about its cognate ligands in the future.This review is dedicated in memory of the career of Alan Poland, one of the truly great minds in pharmacology and toxicology. This work was supported by the National Institutes of Health Grants R35-ES028377, T32-ES007015, P30-CA014520, P42-ES007381, and U01-ES1026127, The UW SciMed GRS Program, and The Morgridge Foundation. The authors would like to thank Catherine Stanley of UW Media Solutions for her artwork
Mitochondrial respiration is required to provide amino acids during fermentative proliferation of fission yeast
When glucose is available, many organisms repress mitochondrial
respiration in favour of aerobic glycolysis, or fermentation in yeast,
that suffices for ATP production. Fission yeast cells, however, rely
partially on respiration for rapid proliferation under fermentative
conditions. Here, we determined the limiting factors that require
respiratory function during fermentation. When inhibiting the
electron transport chain, supplementation with arginine was
necessary and sufficient to restore rapid proliferation. Accordingly,
a systematic screen for mutants growing poorly without arginine
identified mutants defective in mitochondrial oxidative metabolism. Genetic or pharmacological inhibition of respiration triggered
a drop in intracellular levels of arginine and amino acids derived
from the Krebs cycle metabolite alpha-ketoglutarate: glutamine,
lysine and glutamic acid. Conversion of arginine into these amino
acids was required for rapid proliferation when blocking the
respiratory chain. The respiratory block triggered an immediate
gene expression response diagnostic of TOR inhibition, which was
muted by arginine supplementation or without the AMPK-activating kinase Ssp1. The TOR-controlled proteins featured biased
composition of amino acids reflecting their shortage after respiratory inhibition. We conclude that respiration supports rapid
proliferation in fermenting fission yeast cells by boosting the
supply of Krebs cycle-derived amino acids
Characterization of the RNase R association with ribosomes
BACKGROUND: In this study we employed the TAP tag purification method coupled with mass spectrometry analysis to identify proteins that co-purify with Escherichia coli RNase R during exponential growth and after temperature downshift. RESULTS: Our initial results suggested that RNase R can interact with bacterial ribosomes. We subsequently confirmed this result using sucrose gradient ribosome profiling joined with western blot analysis. We found that RNase R co-migrates with the single 30S ribosomal subunits. Independent data involving RNase R in the rRNA quality control process allowed us to hypothesize that the RNase R connection with ribosomes has an important physiological role. CONCLUSIONS: This study leads us to conclude that RNase R can interact with ribosomal proteins and that this interaction may be a result of this enzyme involvement in the ribosome quality control
Novel paradigm for immunotherapy of breast cancer by engaging prophylactic immunity against hepatitis B
Background
Immunotherapy of patients suffering from the human epidermal growth factor receptor 2 overexpressing (HER-2+) breast cancers with the anti-HER-2 antibodies results in increase of the patients’ overall survival. However, no prophylactic vaccine is available against HER-2+ breast cancers. Although, prophylactic vaccine for human hepatitis B virus (HBV) is very effective.
Specific aim
The specific aim of this work was to design, synthesize, and test bio-molecules which would engage prophylactic immunity against hepatitis B virus towards killing breast cancers cells.
Methods and Results
By biomolecular engineering, we have created a novel family of biomolecules: antibody (anti-HER-2) × vaccine (HBsAg) engineered constructs (AVEC: anti-HER-2 × HBsAg). These biomolecules were utilized for redirecting, accelerating, and amplifying of the vaccination-induced, prophylactic immunity originally targeted against HBV as therapeutic immunity, newly targeted against HER-2+ breast cancers. Treatment of the HER-2+ breast cancer cells with AVEC: anti-HER-2 × HBsAg in blood of the patients, vaccinated with HBsAg, rapidly increased efficacy of killing of HER-2+ breast cancer cells over that attained with the naked anti-HER-2 antibodies.
Conclusion
Novel antibody-vaccine engineered constructs (AVEC) facilitate redirecting, accelerating, and amplifying of prophylactic, HBV vaccination-induced immunity as immunotherapy (RAAVIIT) of HER-2+ breast cancer. We currently streamline this novel therapeutic paradigm into clinical trials of breast and other cancers
- …