181 research outputs found
The tyranny of regional unemployment rates
Although there is a substantial body of literature on labour market analysis, most of it ignores the spatial dimension of the labour market. A spatial perspective in analysing labour market processes is important for several reasons. FIRST, labour markets are by no means as homogeneous as conventional labour market theories assume. SECOND, most countries are displaying strong regional variations in the dynamics of unemployment. THIRD, geographical space exerts a frictional effect on labour market processes. Regional unemployment rates appear to be the most important indicators for analysing labour market processes from a spatial perspective. The paper aims to discuss some of the problems that are associated with the use of regional unemployment rates. We will focus attention on conceptual problems, problems of data quality and on some of the new problems that have arisen due to the widespread use of new computer technology. Solutions to many of the problems are obvious, but many of the new problems will require some extra effort for their solution. The tyranny that threatens the research community is that regional unemployment data exercise a power over us that can lead the naive to misinterpretations. The data may mislead even the most righteous among us. A good deal of research effort is often given to overcome the tyranny that is found in the columns and rows that the lay public likes to call statistics. The discussion will be enriched by means of a study utilizing regional unemployment rates at the district level in West Germany.
The tyranny of regional unemployment rates
Although there is a substantial body of literature on labour market analysis, most of it ignores the spatial dimension of the labour market. A spatial perspective in analysing labour market processes is important for several reasons. FIRST, labour markets are by no means as homogeneous as conventional labour market theories assume. SECOND, most countries are displaying strong regional variations in the dynamics of unemployment. THIRD, geographical space exerts a frictional effect on labour market processes. Regional unemployment rates appear to be the most important indicators for analysing labour market processes from a spatial perspective. The paper aims to discuss some of the problems that are associated with the use of regional unemployment rates. We will focus attention on conceptual problems, problems of data quality and on some of the new problems that have arisen due to the widespread use of new computer technology. Solutions to many of the problems are obvious, but many of the new problems will require some extra effort for their solution. The tyranny that threatens the research community is that regional unemployment data exercise a power over us that can lead the naive to misinterpretations. The data may mislead even the most righteous among us. A good deal of research effort is often given to overcome the tyranny that is found in the columns and rows that the lay public likes to call statistics. The discussion will be enriched by means of a study utilizing regional unemployment rates at the district level in West Germany
Accelerated epigenetic aging in Werner syndrome.
Individuals suffering from Werner syndrome (WS) exhibit many clinical signs of accelerated aging. While the underlying constitutional mutation leads to accelerated rates of DNA damage, it is not yet known whether WS is also associated with an increased epigenetic age according to a DNA methylation based biomarker of aging (the "Epigenetic Clock"). Using whole blood methylation data from 18 WS cases and 18 age matched controls, we find that WS is associated with increased extrinsic epigenetic age acceleration (p=0.0072) and intrinsic epigenetic age acceleration (p=0.04), the latter of which is independent of age-related changes in the composition of peripheral blood cells. A multivariate model analysis reveals that WS is associated with an increase in DNA methylation age (on average 6.4 years, p=0.011) even after adjusting for chronological age, gender, and blood cell counts. Further, WS might be associated with a reduction in naïve CD8+ T cells (p=0.025) according to imputed measures of blood cell counts. Overall, this study shows that WS is associated with an increased epigenetic age of blood cells which is independent of changes in blood cell composition. The extent to which this alteration is a cause or effect of WS disease phenotypes remains unknown
Valence band offset in ZnS layers on Si(111) grown by molecular beam epitaxy
The heterojunction between silicon(111) and zinc sulfide was studied using Auger electron spectroscopy, photoelectron spectroscopy, and low‐energy electron diffraction. Zinc sulfide layers were deposited onto cleaved Si(111) surfaces as well as Si(111)‐(7×7) wafers by molecular beam epitaxy. The overlayers exhibited fair crystalline quality, and the characteristic valence‐band spectrum of ZnS. The valence‐band offset between the two semiconductors was determined from the core and valence‐band spectra (ΔEv=−0.7 eV) and found to be much smaller than predicted. We attribute this disagreement, and the larger than usual scatter in our data, to the influence of interface dipoles in this polar interface, the density of which may partly be influenced by a varying amount of interface reaction
Schottky barrier heights and interface chemistry in Ag, In, and Al overlayers on GaP(110)
We have carried out a study of the chemical reaction of silver, indium, and aluminium layers with cleaved GaP(110) surfaces using photoemission with synchrotron radiation. Core level photoelectron spectra show that silver and indium overlayers do not cause an interface reaction with GaP(110). The deposition of Al, on the other hand, leads to an extensive exchange reaction which also proceeds at low temperature, although influenced by changes in overlayer growth morphology. Surface band bending induced by the metallic overlayers was investigated as a function of deposition for n‐ and p‐type material. In contrast to earlier findings, almost identical Schottky barrier heights for In and Ag deposition are obtained, despite the large difference in work function between these two metals. Results for Al also suggest that a small range of pinning positions is responsible for the Schottky barrier heights for junctions of these metals with GaP(110). We find that large peak shifts due to a surface photovoltage induced by the photoemission light source affect the determination of the Schottky barrier heights. This and other possible reasons for the discrepancy with earlier work are discussed
Fullerene-based Biocomponents : New Concepts For Functionalising Membranes
Lipophilic hexakisadducts of fullerene C60 form unprecedented rod-like nanoaggregates in phospholipid-membrane bilayers, resulting in modification of the micromechanic properties and stabilisation of the membrane. Lipofullerenes with amphiphilic side chains enable additionally derivatisation and molecular recognition at the membrane surface. The amphiphilic spacer acts as a transmembrane anchor and provides the terminal functionality outside of the membrane. New systems derived from parent compound 3 carry two functional groups each and can be easily modified due to the modular synthesis. Terminal functionalities to be investigated include D(+)-biotin and IDA (iminodiacetic acid) ligands, as used in nickel-histidine tags. Modification of the lipophilic region, for instance with unsaturated addends is also possible. These addends should allow polymerisation inside the membrane and potentially lead to a tremendous increase of the membrane rigidity. Furthermore, mono- and bilayer-forming fullerene derivatives without the membrane-forming support of lecithins are investigated and exhibit interesting features
The growth of cubic CdS on InP(110) studied in situ by Raman spectroscopy
CdS was deposited onto clean cleaved InP(110) by molecular beam epitaxy (MBE) using a growth rate of 0.2 monolayers/min and a substrate temperature of 440 K (510 K). Raman spectra were taken in situ of the clean InP surface and after each evaporation step using an Ar+ ion laser as a light source. Due to this resonant excitation scattering signals originating from the CdS deposition are observed at coverages as low as 2 monolayers (ML). The number of phonon peaks observed and their selection rules reveal that the cubic modification is present. The spectra are dominated at all coverages by the longitudinal optical (LO) and 2LO phonon scattering intensities and the variation of the 2LO/LO intensity ratio with CdS deposition indicates changes in the electronic structure of the growing CdS. Another spectral feature in the Raman spectra is attributed to a chemically reacted layer at the interface most likely consisting of an In–S compound. The intensity of this feature is found to depend critically on the growth parameters, in particular the substrate temperature, but also on the operating time of the MBE cell. The amount of reaction at the interface also influences the critical CdS film thickness and the development of the 2LO/LO ratio. The results are discussed taking complementary photoluminescence, x‐ray diffraction, and photoemission data into account
Development of reference test specimens for the standardisation of active thermography with flash excitation
Abstract In this paper, results of a project concerning the development of a testing standard for active thermography with flash excitation are presented. In addition to the standardisation of the appropriate selection of equipment and procedures for testing and data analysis, the standard will describe suitable reference test specimens. These test specimens can be used for the qualification of the equipment as well as for the validation of the method including data processing concerning different areas of application
Practical implications of GPR investigation using 3D data reconstruction and transmission tomography
Non-destructive investigation using ground penetrating radar is becoming
more popular in the inspection of civil structures. Currently, traditional 2D
imaging is used as a preliminary tool to fi nd possible areas of interest for
more detailed inspection, which can be accomplished by more advanced
techniques like 3D image reconstruction or tomography. In this paper,
a general overview of the work done at University of Minho regarding these
techniques is presented, together with their limitations and advantages over
typical radargrams, with implications for civil engineering applications. For
this purpose, data acquisition on two large masonry walls and one large
concrete specimen have been carried out, using refl ection mode, 3D
reconstruction and transmission tomography. The specimens have been
specially built for non-destructive inspection techniques testing, incorporating
different materials and internal voids. Radar tomography and 3D image
reconstruction techniques provided much more detailed information about
structural integrity and shapes and location of the voids, when compared to
2D imaging originally used for potential target identification.Fundação para a Ciência e a Tecnologia (FCT) - POCTI SFRH/BD/6409/2001"Sustainable Bridges" European project - FP6-PLT-0165
- …