416 research outputs found

    The UCC: Current and Coming Changes

    Get PDF

    Significant Revisions in SEC Regulations A & D

    Get PDF

    Commercial Paper Forgeries: A Complete One-Hour Lesson

    Get PDF

    Influence of initial conditions on absolute and relative dispersion in semi-enclosed basins

    Get PDF
    Absolute and relative dispersion are fundamental quantities employed in order to assess the mixing strength of a basin. There exists a time scale called Lagrangian Integral Scale associated to absolute dispersion that highlights the occurrence of the transition from a quadratic dependence on time to a linear dependence on time. Such a time scale is commonly adopted as an indicator of the duration needed to lose the influence of the initial conditions. This work aims to show that in a semi-enclosed basin the choice of the formulation in order to calculate the absolute dispersion can lead to different results. Moreover, the influence of initial conditions can persist beyond the Lagrangian Integral Scale. Such an influence can be appreciated by evaluating absolute and relative dispersion recursively by changing the initial conditions. Furthermore, finite-size Lyapunov exponents characterize the different regimes of the basin

    Structural Performance-Based Design Optimisation of a Secondary Mirror for a Concentrated Solar Power (CSP) Plant

    Get PDF
    Concentrated Solar Power (CSP) plants use mirrors to reflect and concentrate sunlight onto a receiver, to heat a fluid and store thermal energy, at high temperature and energy density, to produce dispatchable heat and/or electricity. The secondary mirror is a critical component in the optical system of certain Solar Power Tower plants (SPT), as it redirects the concentrated sunlight from the primary mirror onto the receiver, which can be arranged at ground level. In this study, we propose a design optimisation for the secondary mirror of a CSP plant. The design optimisation method consists of two steps. The first step involves the use of the finite element simulation software Abaqus 2022 to analyse the structural performance of the secondary mirror under thermal loads and wind. The second step consists of the use of simulation results to identify the combination of design parameters and best performances, with respect to both design constraints and structural safety. This is carried out by developing an algorithm that selects those configurations which satisfy the constraints by using safety coefficients. The proposed optimisation method is applied to the design of a potential configuration of a secondary mirror for the beam-down of the CSP Magaldi STEM® technology, although the methodology can be extended to other components of CSP plants, such as primary mirrors and receivers, to further enhance the structural performance of these systems
    corecore