2,394 research outputs found

    Spin quantum plasmas - new aspects of collective dynamics

    Full text link
    Quantum plasmas is a rapidly expanding field of research, with applications ranging from nanoelectronics, nanoscale devices and ultracold plasmas, to inertial confinement fusion and astrophysics. Here we give a short systematic overview of quantum plasmas. In particular, we analyze the collective effects due to spin using fluid models. The introduction of an intrinsic magnetization due to the plasma electron (or positron) spin properties in the magnetohydrodynamic limit is discussed. Finally, a discussion of the theory and examples of applications is given.Comment: 17 pages, short review concerning quantum plasmas, to appear in the Proceedings of the 2007 ICTP Summer College on Plasma Physics, Trieste 30 July - 24 August, 200

    Nonlinear Breit-Wheeler pair creation with bremsstrahlung γ\gamma rays

    Get PDF
    Electron-positron pairs are produced through the Breit-Wheeler process when energetic photons traverse electromagnetic fields of sufficient strength. Here we consider a possible experimental geometry for observation of pair creation in the highly nonlinear regime, in which bremsstrahlung of an ultrarelativistic electron beam in a high-ZZ target is used to produce γ\gamma rays that collide with a counterpropagating laser pulse. We show how the target thickness may be chosen to optimize the yield of Breit-Wheeler positrons, and verify our analytical predictions with simulations of the cascade in the material and in the laser pulse. The electron beam energy and laser intensity required are well within the capability of today's high-intensity laser facilities.Comment: 12 pages, 5 figure

    Dust acoustic wave in a strongly magnetized pair-dust plasma

    Full text link
    The existence of the dust acoustic wave (DAW) in a strongly magnetized electron-positron (pair)-dust plasma is demonstrated. In the DAW, the restoring force comes from the pressure of inertialess electrons and positrons, and the dust mass provides the inertia. The waves could be of interest in astrophysical settings such as the supernovae and pulsars, as well as in cluster explosions by intense laser beams in laboratory plasmas.Comment: 6 pages, revtex

    Photon acceleration in vacuum

    Get PDF
    A new process associated with the nonlinear optical properties of the electromagnetic vacuum, as predicted by quantum electrodynamics, is described. This can be called photon acceleration in vacuum, and corresponds to the frequency shift that takes place when a given test photon interacts with an intense beam of background radiation.Comment: 10 pages, 2 figures, version to appear in Phys. Lett.

    On the contribution of exchange interactions to the Vlasov equation

    Full text link
    Exchange effects play an important role in determining the equilibrium properties of dense matter systems, as well as for magnetic phenomena. There exists an extensive literature concerning, e.g., the effects of exchange interactions on the equation of state of dense matter. Here, a generalization of the Vlasov equation to include exchange effects is presented allowing for electromagnetic mean fields, thus incorporating some of the dynamic effects due to the exchange interactions. Treating the exchange term perturbatively, the correction to classical Langmuir waves in plasmas is found, and the results are compared with previous work. It is noted that the relative importance of exchange effects scales similarly with density and temperature as particle dispersive effects, but that the overall magnitude is sensitive to the details of the specific problem. The implications of our results are discussed.Comment: 9 page

    Particle-in-Cell simulations of electron spin effects in plasmas

    Full text link
    We have here developed a particle-in-cell code accounting for the magnetic dipole force and for the magnetization currents associated with the electron spin. The electrons is divided into spin-up and spin-down populations relative to the magnetic field, where the magnetic dipole force acts in opposite directions for the two species. To validate the code, we have studied the wakefield generation by an electromagnetic pulse propagating parallel to an external magnetic field. The properties of the generated wakefield is shown to be in good quantitative agreement with previous theoretical results. Generalizations of the code to account for more quantum effects is discussedComment: 5 pages, 6 figure

    Circularly polarized modes in magnetized spin plasmas

    Full text link
    The influence of the intrinsic spin of electrons on the propagation of circularly polarized waves in a magnetized plasma is considered. New eigenmodes are identified, one of which propagates below the electron cyclotron frequency, one above the spin-precession frequency, and another close to the spin-precession frequency.\ The latter corresponds to the spin modes in ferromagnets under certain conditions. In the nonrelativistic motion of electrons, the spin effects become noticeable even when the external magnetic field B0B_{0} is below the quantum critical\ magnetic field strength, i.e., B0<B_{0}< BQ=4.4138×109 TB_{Q} =4.4138\times10^{9}\, \mathrm{T} and the electron density satisfies n0≫nc≃1032n_{0} \gg n_{c}\simeq10^{32}m−3^{-3}. The importance of electron spin (paramagnetic) resonance (ESR) for plasma diagnostics is discussed.Comment: 10 page
    • …
    corecore