5,610 research outputs found

    Self-Similar Random Processes and Infinite-Dimensional Configuration Spaces

    Full text link
    We discuss various infinite-dimensional configuration spaces that carry measures quasiinvariant under compactly-supported diffeomorphisms of a manifold M corresponding to a physical space. Such measures allow the construction of unitary representations of the diffeomorphism group, which are important to nonrelativistic quantum statistical physics and to the quantum theory of extended objects in d-dimensional Euclidean space. Special attention is given to measurable structure and topology underlying measures on generalized configuration spaces obtained from self-similar random processes (both for d = 1 and d > 1), which describe infinite point configurations having accumulation points

    On the Fock space for nonrelativistic anyon fields and braided tensor products

    Full text link
    We realize the physical N-anyon Hilbert spaces, introduced previously via unitary representations of the group of diffeomorphisms of the plane, as N-fold braided-symmetric tensor products of the 1-particle Hilbert space. This perspective provides a convenient Fock space construction for nonrelativistic anyon quantum fields along the more usual lines of boson and fermion fields, but in a braided category. We see how essential physical information is thus encoded. In particular we show how the algebraic structure of our anyonic Fock space leads to a natural anyonic exclusion principle related to intermediate occupation number statistics, and obtain the partition function for an idealised gas of fixed anyonic vortices.Comment: Added some references, more explicit formulae for the discrete case and remark on partition function. 25 pages latex, no figure

    A FOCUS ON CONTENT: THE USE OF RUBRICS IN PEER REVIEW TO GUIDE STUDENTS AND INSTRUCTORS

    Get PDF
    Students who are solving open-ended problems would benefit from formative assessment, i.e., from receiving helpful feedback and from having an instructor who is informed about their level of performance. Open-ended problems challenge existing assessment techniques. For example, such problems may have reasonable alternative solutions, or conflicting objectives. Analyses of open-ended problems are often presented as free-form text since they require arguments and justifications for one solution over others, and students may differ in how they frame the problems according to their knowledge, beliefs and attitudes.This dissertation investigates how peer review may be used for formative assessment. Computer-Supported Peer Review in Education, a technology whose use is growing, has been shown to provide accurate summative assessment of student work, and peer feedback can indeed be helpful to students. A peer review process depends on the rubric that students use to assess and give feedback to each other. However, it is unclear how a rubric should be structured to produce feedback that is helpful to the student and at the same time to yield information that could be summarized for the instructor.The dissertation reports a study in which students wrote individual analyses of an open-ended legal problem, and then exchanged feedback using Comrade, a web application for peer review. The study compared two conditions: some students used a rubric that was relevant to legal argument in general (the domain-relevant rubric), while others used a rubric that addressed the conceptual issues embedded in the open-ended problem (the problem-specific rubric).While both rubric types yield peer ratings of student work that approximate the instructor's scores, feedback elicited by the domain-relevant rubric was redundant across its dimensions. On the contrary, peer ratings elicited by the problem-specific rubric distinguished among its dimensions. Hierarchical Bayesian models showed that ratings from both rubrics can be fit by pooling information across students, but only problem-specific ratings are fit better given information about distinct rubric dimensions

    On the feasibility of predicting the ATLAS EM Calorimeter ionization signals using the Time Convolution Method at the LHC sampling rate

    Get PDF
    The Time Convolution Method was developed to extract the electrical parameters associated with the readout of ionization signals in the EM Calorimeter. It has been developed and was successfully used for the EMC calibration at the 2001/2002 H8 beam test. In this note we investigate the the feasibility of the method at lower sampling rate, down to and including the LHC run-time rate of 25 ns

    Conformal symmetry transformations and nonlinear Maxwell equations

    Full text link
    We make use of the conformal compactification of Minkowski spacetime M#M^{\#} to explore a way of describing general, nonlinear Maxwell fields with conformal symmetry. We distinguish the inverse Minkowski spacetime [M#]−1[M^{\#}]^{-1} obtained via conformal inversion, so as to discuss a doubled compactified spacetime on which Maxwell fields may be defined. Identifying M#M^{\#} with the projective light cone in (4+2)(4+2)-dimensional spacetime, we write two independent conformal-invariant functionals of the 66-dimensional Maxwellian field strength tensors -- one bilinear, the other trilinear in the field strengths -- which are to enter general nonlinear constitutive equations. We also make some remarks regarding the dimensional reduction procedure as we consider its generalization from linear to general nonlinear theories.Comment: 12 pages, Based on a talk by the first author at the International Conference in Mathematics in honor of Prof. M. Norbert Hounkonnou (October 29-30, 2016, Cotonou, Benin). To be published in the Proceedings, Springer 201

    Fractional supersymmetric Quantum Mechanics as a set of replicas of ordinary supersymmetric Quantum Mechanics

    Full text link
    A connection between fractional supersymmetric quantum mechanics and ordinary supersymmetric quantum mechanics is established in this Letter.Comment: Paper accepted for publication in Physics Letters

    On gauge transformations of B\"acklund type and higher order nonlinear Schr\"odinger equations

    Get PDF
    We introduce a new, more general type of nonlinear gauge transformation in nonrelativistic quantum mechanics that involves derivatives of the wave function and belongs to the class of B\"acklund transformations. These transformations satisfy certain reasonable, previously proposed requirements for gauge transformations. Their application to the Schr\"odinger equation results in higher order partial differential equations. As an example, we derive a general family of 6th-order nonlinear Schr\"odinger equations, closed under our nonlinear gauge group. We also introduce a new gauge invariant current σ=Ïâˆ‡â–łlnâĄÏ{\bf \sigma}=\rho {\bf \nabla}\triangle \ln \rho , where ρ=ψˉψ\rho=\bar\psi \psi. We derive gauge invariant quantities, and characterize the subclass of the 6th-order equations that is gauge equivalent to the free Schr\"odinger equation. We relate our development to nonlinear equations studied by Doebner and Goldin, and by Puszkarz
    • 

    corecore