8,929 research outputs found

    Energy-momentum tensor in thermal strong-field QED with unstable vacuum

    Full text link
    The mean value of the one-loop energy-momentum tensor in thermal QED with electric-like background that creates particles from vacuum is calculated. The problem differes essentially from calculations of effective actions (similar to that of Heisenberg--Euler) in backgrounds that do not violate the stability of vacuum. The role of a constant electric background in the violation of both the stability of vacuum and the thermal character of particle distribution is investigated. Restrictions on the electric field and its duration under which one can neglect the back-reaction of created particles are established.Comment: 7 pages, Talk presented at Workshop "Quantum Field Theory under the Influence of External Conditions", Leipzig, September 17-21, 2007; introduction extended, version accepted for publication in J.Phys.

    Study of internal gravity waves in the meteor zone

    Get PDF
    An important component of the dynamical regime of the atmosphere at heights near 100 km are internal gravity waves (IGW) with periods from about 5 min to about 17.5 hrs which propagate from the lower atmospheric layers and are generated in the uppermost region of the atmosphere. As IGW propagate upwards, their amplitudes increase and they have a considerable effect on upper atmospheric processes: (1) they provide heat flux divergences comparable with solar heating; (2) they influence the gaseous composition and produce wave variations of the concentrations of gaseous components and emissions of the upper atmosphere; and (3) they cause considerable acceleration of the mean stream. It was concluded that the periods, wavelengths, amplitudes and velocities of IGW propagation in the meteor zone are now measured quite reliably. However, for estimating the influence of IGW on the thermal regime and the circulation of the upper atmosphere these parameters are not as important as the values of wave fluxes of energy, heat, moment and mass

    Arbitrarily slow, non-quasistatic, isothermal transformations

    Full text link
    For an overdamped colloidal particle diffusing in a fluid in a controllable, virtual potential, we show that arbitrarily slow transformations, produced by smooth deformations of a double-well potential, need not be reversible. The arbitrarily slow transformations do need to be fast compared to the barrier crossing time, but that time can be extremely long. We consider two types of cyclic, isothermal transformations of a double-well potential. Both start and end in the same equilibrium state, and both use the same basic operations---but in different order. By measuring the work for finite cycle times and extrapolating to infinite times, we found that one transformation required no work, while the other required a finite amount of work, no matter how slowly it was carried out. The difference traces back to the observation that when time is reversed, the two protocols have different outcomes, when carried out arbitrarily slowly. A recently derived formula relating work production to the relative entropy of forward and backward path probabilities predicts the observed work average.Comment: 6 pages, 6 figure

    Regularization, renormalization and consistency conditions in QED with x-electric potential steps

    Full text link
    The present article is an important addition to the nonperturbative formulation of QED with x-steps presented by Gavrilov and Gitman in Phys. Rev. D. 93, 045002 (2016). Here we propose a new renormalization and volume regularization procedures which allow one to calculate and distinguish physical parts of different matrix elements of operators of the current and of the energy-momentum tensor, at the same time relating the latter quantities with characteristics of the vacuum instability. For this purpose, a modified inner product and a parameter {\tau} of the regularization are introduced. The latter parameter can be fixed using physical considerations. In the Klein zone this parameter can be interpreted as the time of the observation of the pair production effect. In the refined formulation of QED with x-steps, we succeeded to consider the backreaction problem. In the case of an uniform electric field E confined between two capacitor plates separated by a finite distance L, we see that the smallness of the backreaction implies a restriction (the consistency condition) on the product EL from above.Comment: 33 pages, version accepted for publication in Eur. Phys. J.

    Vacuum instability in slowly varying electric fields

    Get PDF
    Nonperturbative methods have been well-developed for QED with the so-called t-electric potential steps. In this case a calculation technique is based on the existence of specific exact solutions (in and out solutions) of the Dirac equation. However, there are only few cases when such solutions are known. Here, we demonstrate that for t-electric potential steps slowly varying with time there exist physically reasonable approximations that maintain the nonperturbative character of QED calculations even in the absence of the exact solutions. Defining the slowly varying regime in general terms, we can observe a universal character of vacuum effects caused by a strong electric field. In the present article, we find universal approximate representations for the total density of created pairs and vacuum mean values of the current density and energy-momentum tensor that hold true for arbitrary t-electric potential steps slowly varying with time. These representations do not require knowledge of the corresponding solutions of the Dirac equation, they have a form of simple functionals of a given slowly varying electric field. We establish relations of these representations with leading terms of the derivative expansion approximation. These results allow one to formulate some semiclassical approximations that are not restricted by the smallness of differential mean numbers of created pairs.Comment: 37 pages, version accepted for publication in Phys. Rev. D. arXiv admin note: substantial text overlap with arXiv:1512.0128

    One-loop energy-momentum tensor in QED with electric-like background

    Full text link
    We have obtained nonperturbative one-loop expressions for the mean energy-momentum tensor and current density of Dirac's field on a constant electric-like background. One of the goals of this calculation is to give a consistent description of back-reaction in such a theory. Two cases of initial states are considered: the vacuum state and the thermal equilibrium state. First, we perform calculations for the vacuum initial state. In the obtained expressions, we separate the contributions due to particle creation and vacuum polarization. The latter contributions are related to the Heisenberg-Euler Lagrangian. Then, we study the case of the thermal initial state. Here, we separate the contributions due to particle creation, vacuum polarization, and the contributions due to the work of the external field on the particles at the initial state. All these contributions are studied in detail, in different regimes of weak and strong fields and low and high temperatures. The obtained results allow us to establish restrictions on the electric field and its duration under which QED with a strong constant electric field is consistent. Under such restrictions, one can neglect the back-reaction of particles created by the electric field. Some of the obtained results generalize the calculations of Heisenberg-Euler for energy density to the case of arbitrary strong electric fields.Comment: 35 pages; misprints in the sign in definitions (40)-(43), and (68) corrected, results unchange
    corecore