193 research outputs found

    Photoelastic force measurements in granular materials

    Full text link
    Photoelastic techniques are used to make both qualitative and quantitative measurements of the forces within idealized granular materials. The method is based on placing a birefringent granular material between a pair of polarizing filters, so that each region of the material rotates the polarization of light according to the amount of local of stress. In this review paper, we summarize past work using the technique, describe the optics underlying the technique, and illustrate how it can be used to quantitatively determine the vector contact forces between particles in a 2D granular system. We provide a description of software resources available to perform this task, as well as key techniques and resources for building an experimental apparatus

    Determination of the characteristic directions of lossless linear optical elements

    Full text link
    We show that the problem of finding the primary and secondary characteristic directions of a linear lossless optical element can be reformulated in terms of an eigenvalue problem related to the unimodular factor of the transfer matrix of the optical device. This formulation makes any actual computation of the characteristic directions amenable to pre-implemented numerical routines, thereby facilitating the decomposition of the transfer matrix into equivalent linear retarders and rotators according to the related Poincare equivalence theorem. The method is expected to be useful whenever the inverse problem of reconstruction of the internal state of a transparent medium from optical data obtained by tomographical methods is an issue.Comment: Replaced with extended version as published in JM

    Local stress measurement using the thermoelastic effect

    Full text link
    A technique for measuring local stresses in metallic specimens is proposed and tested. The technique depends on the experimental measurement of temperature changes in stressed members due to adiabatic elastic deformation. At a free boundary in a body under plane stress, these temperature changes are directly related to the value of the tangential principal stress. The technique is suited for measurement of stress-concentration effects, since the temperature changes can be measured with thermocouples featuring extremely small junctions.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43937/1/11340_2006_Article_BF02326342.pd

    On Saint Venant's principle under dynamic conditions

    No full text

    A nomogram for photoelasticians

    No full text

    A study of the scattered-light technique in two-dimensional problems

    No full text
    • …
    corecore