4,686 research outputs found

    Lepton masses and mixings in orbifold models with three Higgs families

    Get PDF
    We analyse the phenomenological viability of heterotic Z(3) orbifolds with two Wilson lines, which naturally predict three supersymmetric families of matter and Higgs fields. Given that these models can accommodate realistic scenarios for the quark sector avoiding potentially dangerous flavour-changing neutral currents, we now address the leptonic sector, finding that viable orbifold configurations can in principle be obtained. In particular,it is possible to accomodate present data on charged lepton masses, while avoiding conflict with lepton flavour-violating decays. Concerning the generation of neutrino masses and mixings, we find that Z(3) orbifolds offer several interesting possibilities.Comment: 28 pages, 11 figures. References adde

    Stochastic growth equations on growing domains

    Full text link
    The dynamics of linear stochastic growth equations on growing substrates is studied. The substrate is assumed to grow in time following the power law tγt^\gamma, where the growth index γ\gamma is an arbitrary positive number. Two different regimes are clearly identified: for small γ\gamma the interface becomes correlated, and the dynamics is dominated by diffusion; for large γ\gamma the interface stays uncorrelated, and the dynamics is dominated by dilution. In this second regime, for short time intervals and spatial scales the critical exponents corresponding to the non-growing substrate situation are recovered. For long time differences or large spatial scales the situation is different. Large spatial scales show the uncorrelated character of the growing interface. Long time intervals are studied by means of the auto-correlation and persistence exponents. It becomes apparent that dilution is the mechanism by which correlations are propagated in this second case.Comment: Published versio

    Chemical Oscillations out of Chemical Noise

    Full text link
    The dynamics of one species chemical kinetics is studied. Chemical reactions are modelled by means of continuous time Markov processes whose probability distribution obeys a suitable master equation. A large deviation theory is formally introduced, which allows developing a Hamiltonian dynamical system able to describe the system dynamics. Using this technique we are able to show that the intrinsic fluctuations, originated in the discrete character of the reagents, may sustain oscillations and chaotic trajectories which are impossible when these fluctuations are disregarded. An important point is that oscillations and chaos appear in systems whose mean-field dynamics has too low a dimensionality for showing such a behavior. In this sense these phenomena are purely induced by noise, which does not limit itself to shifting a bifurcation threshold. On the other hand, they are large deviations of a short transient nature which typically only appear after long waiting times. We also discuss the implications of our results in understanding extinction events in population dynamics models expressed by means of stoichiometric relations

    Dynamic Scaling of Non-Euclidean Interfaces

    Full text link
    The dynamic scaling of curved interfaces presents features that are strikingly different from those of the planar ones. Spherical surfaces above one dimension are flat because the noise is irrelevant in such cases. Kinetic roughening is thus a one-dimensional phenomenon characterized by a marginal logarithmic amplitude of the fluctuations. Models characterized by a planar dynamical exponent z>1z>1, which include the most common stochastic growth equations, suffer a loss of correlation along the interface, and their dynamics reduce to that of the radial random deposition model in the long time limit. The consequences in several applications are discussed, and we conclude that it is necessary to reexamine some experimental results in which standard scaling analysis was applied

    Nonlinear field theories during homogeneous spatial dilation

    Full text link
    The effect of a uniform dilation of space on stochastically driven nonlinear field theories is examined. This theoretical question serves as a model problem for examining the properties of nonlinear field theories embedded in expanding Euclidean Friedmann-Lema\^{\i}tre-Robertson-Walker metrics in the context of cosmology, as well as different systems in the disciplines of statistical mechanics and condensed matter physics. Field theories are characterized by the speed at which they propagate correlations within themselves. We show that for linear field theories correlations stop propagating if and only if the speed at which the space dilates is higher than the speed at which correlations propagate. The situation is in general different for nonlinear field theories. In this case correlations might stop propagating even if the velocity at which space dilates is lower than the velocity at which correlations propagate. In particular, these results imply that it is not possible to characterize the dynamics of a nonlinear field theory during homogeneous spatial dilation {\it a priori}. We illustrate our findings with the nonlinear Kardar-Parisi-Zhang equation

    Pressure effects in PrT2B2C (T = Co, Ni, Pt): Applied and chemical pressure

    Full text link
    High-pressure electrical resistivity, r(T), measurements on intermetallic Pr(Co, Ni, Pt)2B2C compounds were performed down to 2K. At room pressure the r(T) in a-b direction curves for the non superconducting Pr(Co, Ni)2B2C compounds exhibit magnetic correlations at about 10 and 4 K, respectively. At low temperatures, PrCo2B2C shows a large spin-dependent electron scattering in comparison to PrNi2B2C. Under applied pressure the magnetic scattering tends to be suppressed more effectively in PrCo2B2C than in PrNi2 B2C. The low temperature behavior of r(T,P) for PrNi2B2C and PrCo2B2C suggests a spin fluctuations mechanism. In the other hand PrPt2B2C compound shows superconductivity at about 6 K and under pressure its superconducting transition temperature tends to be degraded at a rate dTc/dP = -0.34 K/GPa, as expected in compounds with transition metals. The experimental results in Co, Ni and Pt based compounds are analyzed from the point of view of the external and chemical internal pressure effects

    Trauma, shame and performance: Towards a new topography of affects in black queer identities

    Get PDF
    Haitian American feminist and lesbian activist MilDred Gerestant has become one of the most acclaimed gender performers who best illustrates the malleability of gender, race and sexuality in the reconstruction of black queer identities. Drawing on interdisciplinary theoretical frameworks like trauma studies, queer theory and affect theory, my contribution analyses MilDred''s gender performances as creative attempts to surpass negative affects often attached to minority identities. By exploring the affect of shame as a productive enactment of transformation and hope, rather than as a source of numbness and suffering, this article aims to offer an alternative epistemological paradigm of feminist feeling and thinking, thus challenging mainstream discourses of identity and affective normalcy

    Analysis of the Behaviour of Biofuel-Fired Gas Turbine Power Plants

    Get PDF
    The utilisation of biofuels in gas turbines is a promising alternative to fossil fuels for power generation. It would lead to significant reduction of CO2 emissions using an existing combustion technology, although significant changes seem to be needed and further technological development is necessary. The goal of this work is to perform energy and exergy analyses of the behaviour of gas turbines fired with biogas, ethanol and synthesis gas (bio-syngas), compared with natural gas. The global energy transformation process (i.e. from biomass to electricity) has also been studied. Furthermore, the potential reduction of CO2 emissions attained by the use of biofuels has been determined, considering the restrictions regarding biomass availability. Two different simulation tools have been used to accomplish the aims of this work. The results suggest a high interest and the technical viability of the use of Biomass Integrated Gasification Combined Cycle (BIGCC) systems for large scale power generation
    corecore